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Abstract Wildfire smoke and extreme heat events are worsening in California, but their combined health
effects are not well understood. This study estimates joint effects of extreme heat and wildfire smoke on
hospitalizations in California, 2011–2020. We used a case crossover design with time‐stratified controls and
conditional logistic regression to estimate these effects at multiplicative and additive scales. Exposures were
assessed for 16 combinations of exposure lags (0–3 days) for extreme heat and wildfire influenced fine
particulate matter. Among over 28 million cases of all‐natural cause morbidity, the majority were adults aged 65
and older (41.4%), English speakers (85.1%), and White, non‐Hispanic (49.7%), mostly residing in urban areas
(97.2%). The study found roughly 8% of respiratory morbidities (95% CI, 2.4%–13.8%) were attributable to the
interaction of wildfire smoke and extreme heat. Significant joint effects were also observed for cardiovascular
(5.5%) and renal morbidities (6.2%). Subgroup analyses revealed stronger effects: Respiratory (19.2%, 95% CI
6.5%–32.1%) and cerebrovascular morbidities (15.7%, 95% CI 4%–27.4%) were most pronounced in Black
individuals; older adults (50–64 years) showed strong effects for renal morbidities (15.4%, 95% CI − 1.6%−
32.6%); and cardiovascular effects were highest among females (9.8%, 95% CI 2.9%–16.7%). Effects on all‐
natural cause morbidity were generally null. The interaction of wildfire smoke and extreme heat within a short
exposure window (4 days) increases hospitalizations; highlighting the need for joint heat and wildfire smoke
interventions that target populations at greater risk.

Plain Language Summary In California, both wildfire smoke and extreme heat events are
becoming more frequent and severe due to climate change, but we don't fully understand how the combination
of hazards impacts human health. This study looked at hospitalizations from 2011 to 2019 to find out how
these two hazardous exposures interact and influence health problems. We specifically examined cases of all‐
natural cause morbidity, as well as cause‐specific end points for respiratory, cardiovascular, renal, and
cerebrovascular morbidity. We found a significant portion of respiratory illnesses (8%) can be attributed to the
combined effects of wildfire smoke and extreme heat. Cardiovascular and renal problems were affected as
well, though to a lesser extent (5.5% and 6.2%, respectively). We also observed more pronounced effects,
including significant impacts on cerebrovascular health, within population subgroups characterized by
individual and community level factors reflecting possible differences in biologic risks, risk behavior, and
social and place‐based disadvantages. These results are helpful for targeted risk communications for
combinations of wildfire smoke and extreme heat events that are either co‐occurring or successive within a
4 day exposure period.

1. Introduction
California has incurred repeated record‐breaking seasons of wildfire and extreme heat in recent years. Conse-
quences of climate change have led to increasing frequencies and magnitudes for these climate hazards. Since the
1970s, the state has seen average summer day temperatures increase by approximately 1.4°C amidst a fivefold
increase in landscape burned by wildfire (Westerling et al., 2006; Williams et al., 2019). Longer and more severe
wildfire seasons are driving increasing compound wildfire and extreme heat events, that is, the combination of
multiple hazards contributing to environmental or public health risks (Masri et al., 2022; Rosenthal et al., 2022).
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However, the resulting health impacts of compound wildfire smoke and extreme heat exposures are not well
understood.

Adverse health impacts of wildfire emissions and extreme heat events have been studied extensively in single
hazard assessments. Associations with wildfire smoke have been studied in relationship to multiple air pol-
lutants, such as ozone, NO, and particulate matter, but the primary public health concern has focused on fine
particulate matter (PM2.5) (Cascio, 2018; Reid, Brauer, et al., 2016; U.S. EPA, 2019). Exposure to PM2.5 due to
wildfires increases risks of adverse respiratory and cardiovascular outcomes, including asthma, chronic
obstructive pulmonary disease (COPD), and cardiac arrest (Cascio, 2018; Chen et al., 2021; Reid, Brauer,
et al., 2016). Similarly, studies of extreme heat show high ambient temperatures increase risks of acute health
conditions, such as heat stroke, renal failure, and fluid and electrolyte disorders (Bi et al., 2011; Bobb
et al., 2014; Guirguis et al., 2014), as well as exacerbation of underlying illnesses, including respiratory and
cardiovascular conditions (Schmeltz et al., 2016); although a variety of definitions are often used to charac-
terize extreme heat (Bi et al., 2011; Bobb et al., 2014; Guirguis et al., 2014; Schmeltz et al., 2016). We focus
on the associated effects of single days of extreme temperatures, rather than consecutive days, that is, heat
waves, to examine different combinations of wildfire smoke and extreme heat exposures using the same
temporal unit.

Recent studies show joint effects of air pollution and heat, including ambient air pollutants and limited evidence
on wildfire emissions (Analitis et al., 2018; Anenberg et al., 2020; Chen et al., 2024; Patel et al., 2019; Rahman
et al., 2022; Schwarz et al., 2021). A recent review by Anenberg et al. (2020) on synergistic joint health effects of
ambient air pollution, temperature, and pollen exposure found sufficient evidence for synergistic all‐cause
mortality, cardiovascular, and respiratory effects of air pollution and heat (particularly for ozone and particu-
late matter) (Anenberg et al., 2020). Another study on the burden of compound heat and air pollution found peaks
in air pollution exposures were linked to wildfire events and high heat index (Austin et al., 2021). Similarly, other
studies also suggest wildfires are key to driving exposures and impacts from compound PM2.5 and extreme heat
(Masri et al., 2022; Patel et al., 2019; Rosenthal et al., 2022). The few studies on joint effects of wildfire smoke
and heat show effects for emergency department admissions in Australia (Patel et al., 2019), and for hospitali-
zations (Chen et al., 2024) and all‐cause, respiratory, and cardiovascular mortalities in California (Rahman
et al., 2022). Our study extends this research by investigating additional outcomes related to independent effects
of wildfire smoke and extreme heat that have yet to be explored in the compound hazards context, including renal
and cerebrovascular morbidity. Moreover, prior studies have primarily focused on the effects of exposure to
wildfire smoke and extreme heat on the same day, and this work takes a novel approach by examining various
exposure lag patterns to better elucidate the temporal dynamics and potential synergistic effects of these hazards
over short‐term periods.

Findings from previous epidemiologic studies of ambient air pollutants and extreme heat also indicate joint health
effects can be variable across specific social and place‐based vulnerabilities (Qin et al., 2017; Schwarz
et al., 2021; Simpson et al., 2023). Schwarz et al. (2021) did not observe additive interaction between ozone and
heat exposures in the general population, but these joint effects were strong in subpopulation groups such as
census tracts with lower median income or higher unemployment. Similarly, Chen et al. (2024) show the syn-
ergistics joint effects of exposure to wildfire smoke and extreme heat on the same day varies spatially. They found
larger effects in communities with greater socioeconomic and place‐based disadvantages, for example, lower
income, lower education, and reduced green space. We aim to investigate the joint effects of exposure to com-
pound wildfire smoke and extreme heat on hospitalizations in California from 2011 to 2020 and characterize
populations with greater risks of adverse impacts. We examine multiple relationships of wildfire smoke and
extreme heat exposures within a short‐term exposure window. This study seeks to provide a better understanding
of the increasing threats of wildfire and extreme heat events to improve public health adaptations amidst a
changing climate.

2. Materials and Methods
2.1. Population and Health Data

We obtained hospital admissions data for California, 2011–2020, from the California Department of Health Care
Access and Information (HCAI). International Classification of Disease, Ninth Edition (ICD‐9) and Tenth Edition
(ICD‐10) were used to classify outcomes of interest. Diagnoses were included for adults age ≥18 years and
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excluded accidental conditions due to trauma, injury, or poison. Diagnoses meeting these criteria (e.g., circulatory
diseases, respiratory diseases, infectious diseases, metabolic disorders, cancer, mental and neurodevelopmental
disorders, and complications of pregnancy or childbirth) were classified as all‐natural cause morbidity. Cause‐
specific morbidities were also defined for respiratory‐cause morbidity (ICD‐9 codes 460–466, 471, 472, 477,
478, 480–487, 490–496, 511, 513–519, 786; ICD‐10 codes J00‐J06, J12‐J18, J20‐J22, J30, J31, J33, J34, J38, J39,
J40‐J47, J80‐J86, J90‐J92, J94, J96‐J99, R04‐R07, R09), cardiovascular‐cause morbidity (ICD‐9 codes 390–398,
401–417, 420–429, 440–449; ICD‐10 codes I00‐I02, I05‐I16, I20‐I28, I30‐I5A, I70‐I79), cerebrovascular‐cause
morbidity (ICD‐9 codes 430–438, ICD‐10 codes I60‐I69), and renal‐cause morbidity (ICD‐9 codes 580–589,
591–599, 788; ICD‐10 codes N00‐N08, N10‐N13, N15‐N23, N25‐N29, R30‐R39).

HCAI also provides individual level data for sex, age, preferred language spoken, and race and ethnicity. We
characterized preferred language as English, Spanish or other. Additionally, race and ethnic groups were
collapsed due to a small number of cases; therefore, race and ethnicity were defined as White, Hispanic, Black,
Asian, and other. Other race includes individuals identifying as Native Hawaiian or Pacific Islander, American
Indian or Alaska Native, multiracial, or other in the HCAI reports. We also obtained geographic and temporal data
for date of admission, hospital ZIP Code, and patient's residential ZIP Code.

ZIP Code Tabulation Area (ZCTA) level characteristics for social and place‐based disadvantages were obtained
from US Census 5‐year American Community Survey, 2015–2019. We acquired measures of poverty, educa-
tional attainment, and rurality to examine community level factors relating to exposure and outcome. Community
level factors were operationalized as binary variables for stratified analyses. We characterized higher risk pop-
ulations for educational attainment as ZCTAs where 50% or more of the adult population has a high school
education or less; for poverty as ZCTAs where 25% or more of households are living under poverty; and for rural
as ZCTAs with majority (50% or more) rural composition. Additionally, we calculated ZCTA‐level, population‐
weighted exposure estimates (see Section 2.3) using 1‐km gridded population data from the Gridded Population
of the World V4 (Doxsey‐Whitfield et al., 2015).

2.2. Environmental Data

Daily 4‐km gridded maximum temperature (Tmax) was obtained from the gridMET data set for our study period
and region (Abatzoglou, 2013). This data set combines data from the Parameter‐elevation Regressions on In-
dependent Slopes Model (PRISM) and interpolated data from the NASANorth American Land Data Assimilation
System (NLDAS) Phase 2.

Wildfire smoke and air quality data are a combination of geostatistical modeled estimates of daily PM2.5 and
wildfire‐specific smoke products (Jones‐Ngo et al., 2024). Modeled daily PM2.5 estimates, 3‐km spatial resolution
gridded over the state of California, is from the NASA Health and Air Quality Applied Sciences Team
(HAQAST) (Al‐Hamdan et al. (2019, 2014, 2009); Freedman et al. (2021, 2017); Diao et al. (2019); O’Neill
et al. (2021)). This product uses a geostatistical surfacing algorithm combining ground monitored data with
satellite information on aerosol optical depth as described in detail in Al‐Hamdan et al. (2019, 2014, 2009). Daily
gridded PM2.5 estimates were then combined with smoke plume data from NOAA's Hazard Mapping System
(HMS) SMOKE Product to estimate the influence of wildfires on PM2.5, as described in Jones‐Ngo et al. (2024).
Expected smoke‐free estimates of PM2.5 were modeled for each grid and day of year based on estimates for the
same day of year from 2011 to 2020 without HMS smoke plume present. The HMS data includes spatial vectors
of smoke plumes from satellite imagery, thus, if a smoke plume overlapped a grid cell and total PM2.5 exceeded
the expected smoke‐free value, then WF‐Influenced PM2.5 estimates were calculated by subtracting the expected
smoke‐free value from the total PM2.5 estimate.

2.3. Exposure Definitions

We classified exposures at the ZCTA level for wildfire smoke and extreme heat. Gridded estimates were
resampled to 1‐km and combined with 1‐km population data. Then, the product of hazard estimates, Tmax andWF‐
Influenced PM2.5, and proportion of ZCTA population within the grid cell were aggregated to the ZCTA‐level.
ZCTA‐level estimates reflect exposure across the population distribution within the ZCTA.

For the primary analysis, we selected definitions of extreme heat days using the 95th percentile threshold, as
detailed below, (referred to as extreme heat hereafter) and wildfire smoke as continuousWF‐Influenced PM2.5 per
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1 μg/m3 (referred to as wildfire smoke hereafter). We also tested the sensitivity of different exposure definitions
for wildfire smoke and extreme heat. Daily Tmax estimates were dichotomized to define single extreme heat days
using month‐ and ZCTA‐specific thresholds at the 90th, 95th, and 99th percentiles. We tested continuous daily
Tmax and health effects per 5°F increments of Tmax. For wildfire smoke, we tested cutoffs using WF‐Influenced
PM2.5 greater than 0 and greater than 12 μg/m3, which corresponds to the cutoff for concentrations of heavy
density HMS smoke plumes, shown with the WF‐Influenced PM2.5 metric. Heavy density smoke plumes have
been shown to elicit stronger associations with adverse health outcomes (Jones et al., 2020).

2.4. Statistical Analysis

We examined the relationship between wildfire smoke and extreme heat using a time‐stratified case crossover
design. This approach is commonly used for epidemiologic studies of air pollution and extreme heat as it controls
for individual level factors, such as demographics and comorbidities, and temporal variation, such as day of week
effects and seasonality (Bateson & Schwartz, 2001; Carracedo‐Martínez et al., 2010; Janes et al., 2005). The date
of hospital admission was considered the case day, and control days were matched by day of week in the same
month and year.

Each case and control were assigned daily, ZCTA‐level exposure estimates for lag days 0–3. Exposure on lag day
0 is the case or control day, where exposure on lag day 1 is 1 day prior to the case or control day, lag day 2 is 2 days
prior, and lag day 3 is 3 days prior. Exposure was assigned using patient's ZIP Code of residence matched to
ZCTA. When patient ZIP Code was unmatched (N = 964 case and controls), we used hospital ZIP Code instead.
Additionally, two ZCTAs were missing exposure data and excluded from the analysis (N = 1,745 cases and
controls).

We estimated the joint effects of WF‐Influenced PM2.5 and extreme heat days on all‐natural, respiratory, car-
diovascular, cerebrovascular, and renal morbidity risks using conditional logistic regression. Joint effects studies
have been used extensively in environmental epidemiology (Analitis et al., 2018; Anenberg et al., 2020; Chen
et al., 2024; Davalos et al., 2017; Patel et al., 2019; Rahman et al., 2022), and additive scale interaction is
recognized as a more relevant measure for public health (Rothman et al., 1980; VanderWeele & Knol, 2014).
Additive measures provide insights into the absolute difference in hospitalizations due to the interaction of
wildfire smoke and extreme heat, while multiplicative measures indicate how much more likely someone is to be
hospitalized when exposed to both hazards. Therefore, we present primary results on the additive scale. The
conditional logistic regression models provide results on the multiplicative scale for interaction (OR11), as well as
independent effects of wildfire smoke (OR10) and extreme heat (OR01). We then calculated additive scale
interaction post hoc by measuring the attributable proportion due to interaction (AP; Equation 1), calculated based
on the relative excess risk due to interaction (RERI; Equation 2). This approach provides empirical evidence for
the number of hospital admissions attributable to the interaction of wildfire smoke and extreme heat effects.

AP =
RERI

OR11 − 1
(1)

RERI = OR11 − (OR10 + OR01 − 1) (2)

We modeled each outcome and combination of wildfire smoke and extreme heat exposure lag days separately to
explore how these two exposures interact over time. Given the complex and potentially delayed physiological
responses, as well as social and behavioral factors (e.g., access to care or willingness to seek care), the effects of
these exposures may vary depending on the timing of exposure relative to the onset of illness. By modeling each
combination of exposure lags, we capture potential synergistic effects that may differ based on when the ex-
posures occur in relation to each other, allowing for a more granular understanding of the interaction. This
approach, while exploratory, provides insights to the nuanced interactions between these two hazards that could
be missed with more aggregate modeling strategies. Combinations of exposure lags for compound extreme heat
and wildfire smoke exposure, CHWF lagX,Y, are described using “X,Y” notation representing heat lag day X and
smoke lag day Y. Additionally, we conducted stratified models for population subgroups of individual level
factors—sex, age group, preferred language spoken, and race and ethnicity—and community factors at the ZCTA
level—household income below poverty, low educational attainment, and rurality.

The model used the following conditional logistic regression formulation:
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log(
Pr(Y = 1∣X)

1 − Pr(Y = 1∣X)
) = β0i + βHXHEAT + βSXSMOKE + βHS (XHEAT ∗ XSMOKE) (3)

Where:

• Y is the binary outcome of interest (e.g., hospitalization for a specific condition).
• XHEAT is a binary indicator for heat exposure, specific to the corresponding lag day.
• XSMOKE is the continuous measure of wildfire smoke exposure, also specific to the corresponding lag day.
• XHEAT * XSMOKE represents the interaction term between heat and smoke exposures, allowing for the eval-

uation of joint effects of both exposures.
• β0i is the intercept term, representing the case crossover strata.
• ΒH, βS, and βHS are the coefficients for heat exposure, smoke exposure, and the interaction term, respectively.

The novel coronavirus (COVID‐19) pandemic had significant effects in California in 2020. The state issued a
mandatory stay at home order startingMarch 2020, increasing the proportion of population staying at home (Dave
et al., 2021; Zanocco et al., 2021). Subsequently, the Pandemic changed hospital utilization during this period
(Bhatt et al., 2020; Ojetti et al., 2020). Thus, we excluded 2020 from the analysis; however, we conducted
sensitivity analyses for data from 2011 to 2020 and 2020, separately. Additionally, we further tested models to
examine the change in ICD classifications (from ICD‐9 to ICD‐10) for each outcome of interest. Renal diagnoses
changed meaningfully in annual analyses of admissions data, from 2015 to 2016. Consequently, when ICD coding
systems changed, diagnoses of renal conditions changed as well, as described by another study (Watzlaf
et al., 2007). Therefore, we tested the sensitivity of models for cause‐specific end points for 2011 to 2015 and
2016 to 2019, separately. Models were also restricted to events during May through November, when compound
wildfire smoke and extreme heat exposures primarily occurred, and additional sensitivity analyses were con-
ducted examining all months.

All analyses were performed using R statistical software (version 4.3.1). The InteractionR package was used to get
estimates for multiplicative and additive scale interaction terms, using the Delta method to estimate CIs. This
research was reviewed and approved by the California Health and Human Services Agency's Committee for the
Protection of Human Subjects (CPHS) (#2022‐130) and the University of California, Davis IRB Administration
(#1943974‐1).

3. Results
In California from 2011 to 2019 May through November, there were over 15 million hospital admissions for all‐
natural cause morbidity (Table 1). There were slight differences in the demographics among the outcomes of
interest. Notably, cases of cause‐specific end points were older with higher proportions of elderly aged 65 years
and older compared to all‐natural cause cases. Other demographic factors were comparable across outcomes with
a sample predominantly composed of persons identifying as White and English speakers. Exposures were similar
among all outcomes of interest. The highest Tmax exposures among all cases occurred in 2016 (123.1°F), while the
maximum WF‐Influenced PM2.5 exposure was in 2017 (309.4 μg/m3).

Our results show the joint effects of compound wildfire smoke and extreme heat differ for all‐natural, respiratory‐,
cardiovascular‐, cerebrovascular‐, and renal‐cause morbidities (Figure 1). Effects differed by combination of
exposure lag days and outcomes of interest. Our primary analysis of extreme heat and wildfire smoke shows
strong multiplicative and additive interaction for respiratory, cardiovascular, and renal morbidities, though
inconsistent for all exposure lag combinations. The largest additive effect shows around 8.1% of respiratory
morbidities (CHWF lag0,3) is due to the interaction of wildfire smoke and extreme heat effects (95% CI 2.3%–
13.8%, p = 0.003; Table S1 in Supporting Information S1). Cardiovascular and renal morbidities also showed
significant and near‐significant joint effects, respectively. However, we did not observe joint effects for cere-
brovascular morbidity in the total case population.

Effect estimates for all‐natural cause morbidity were small and close to null across all analyses. In the primary
analysis, significant additive effects (attributable proportion) ranged from − 0.5% to 0.46% across the different
exposure lag combinations. While many of these results show statistically significant p‐values, this is likely due to
the large sample size; the effect sizes are too small to have practical significance for public health practice
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(Khalilzadeh & Tasci, 2017). The lack of meaningful effects suggests that the combined effects of wildfire smoke
and extreme heat do not substantially contribute to morbidity in this broad category. Results for all‐natural cause
morbidity are presented in supplementary tables, including tables of additive effects (Table S1 in Supporting
Information S1) and multiplicative effects (Table S2 in Supporting Information S1).

Table 1
Demographics and Exposure by Outcome of Interest, Including Individual Level Case Demographics and ZIP Code
Tabulation Area (ZCTA) Characteristics, for California From 2011 to 2019, May Through November

All‐natural Cardiovascular Cerebrovascular Renal Respiratory

Case Counts 15,014,852 33,277 47,322 18,930 24,453

Sex

Male (%) 42.4 56.2 50.5 44.1 46.8

Female (%) 57.6 43.8 49.5 55.9 53.2

Age Group

18–49 years (%) 36.0 11.3 9.7 19.3 16.6

50–64 years (%) 23.8 27.5 26.0 23.4 29.7

65+ yr (%) 40.2 61.2 64.3 57.2 53.7

Preferred Language

English (%) 85.2 84.4 82.7 82.8 84.6

Spanish (%) 10.5 10.0 10.9 12.1 9.9

Other (%) 4.3 5.5 6.4 5.1 5.4

Race and Ethnicity

White (%) 49.8 54.2 51.3 52.4 52.2

Black (%) 9.2 10.6 9.6 9.1 12.4

Hispanic (%) 27.7 21.9 22.7 26.5 22.7

Asian (%) 8.7 8.6 11.4 8.2 8.4

American Indian, Alaska Native (%) 0.3 0.3 0.3 0.3 0.3

Hawaiian Native, Pacific Islander (%) 3.0 3.2 3.2 2.8 3.0

Multiracial (%) 0.1 0.1 0.1 0.0 0.1

Other (%) 0.4 0.4 0.5 0.3 0.4

Rurality

Majority urban (%) 97.2 96.8 97.0 97.4 96.9

Majority rural (%) 2.8 3.2 3.0 2.6 3.1

Poverty

Lesser poverty (%) 81.2 81.8 82.6 80.9 79.6

Higher poverty (%) 18.8 18.2 17.4 19.1 20.4

Educational Attainment

Higher education (%) 68.1 68.0 69.3 67.6 65.4

Lower education (%) 31.8 31.8 30.6 32.3 34.5

Exposure

Mean, Max temperature, °F 75.5 75.3 75.3 76.5 74.5

No. cases heat exposed 12,50,476 2861 3,857 1,623 2,216

% cases heat exposed (%) 8.3 8.6 8.2 8.6 9.1

Mean, Smoke PM2.5, μg/m3 0.086 0.082 0.091 0.078 0.073

No. cases smoke exposed 558,972 1,218 1,835 566 756

% cases smoke exposed (%) 3.7 3.7 3.9 3.0 3.1

GeoHealth 10.1029/2024GH001237

JONES‐NGO ET AL. 6 of 20



3.1. Stratified Analyses

Stratified results revealed that subpopulations experienced significant joint effects of wildfire smoke and extreme
heat at both additive (Table S3 in Supporting Information S1) and multiplicative (Table S4 in Supporting In-
formation S1) scales. The outcomes and exposure lags varied across stratum‐specific risks, and not all effects
persisted at the multiplicative scale. Notable differences in effects were observed between individual and
community‐level factors, health outcomes, and exposure lags. For example, the attributable proportion of
morbidity due to the interaction of wildfire smoke and extreme heat was larger and statistically significant in
certain subgroups compared to the total case population for respiratory (Figure 2), cardiovascular (Figure 3), and
renal (Figure 4) morbidities. Additionally, significant joint effects for cerebrovascular morbidities (Figure 5) were
observed in some strata, which were not present in the total case population. These results, stratified by individual
and community factors, are discussed in greater detail in the following sections.

In some instances, the case population was predominantly composed of a specific characteristic (e.g., preferred
language spoken or rural/urban ZCTA classification), which limits the results in certain subgroups. Subgroups
with fewer than 10 cases exposed were suppressed.

3.1.1. Sex

Sex‐stratified estimates showed males and females had significant joint effects for wildfire smoke and extreme
heat that differed by health outcome and exposure lags. The strongest sex‐stratified additive effects showed
roughly 16% of respiratory morbidities in males exposed to heat on the day of hospital admission (lag 0) and
wildfire smoke 3 days prior (lag 3) were attributable to interaction (95% CI 7.7%–24.6%, p < 0.001; Table S3 in
Supporting Information S1). This effect was significantly larger in males (16.2%) compared to females (2.3%). In
contrast, additive effects for cardiovascular, cerebrovascular, and renal morbidity were larger and significant
among females. Synergistic effects were significantly higher for females compared to males for cerebrovascular
morbidity (6.6% for females compared to non‐significant − 0.2% for males on CHWF lag3,0) and differences were
near‐significant for cardiovascular morbidity (9.8% for females compared to non‐significant 1.5% for males on
CHWF lag3,0).

Figure 1. Heat map of attributable proportion of hospital admissions due to the interaction of extreme heat and wildfire smoke by outcome of interest in California, May
through November 2011–2019. Different combinations of exposure lags were modeled separately.
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3.1.2. Age Group

There were differences in joint effects across age groups, but some relationships varied by exposure lags. For
instance, additive effects for respiratory morbidity were largest for young to middle‐aged adults, 18–49 years of
age (AP 14.6%, 95% CI 3.3%–25.9%, p = 0.0056; Table S3 in Supporting Information S1) on CHWF lag2,0. This
effect was significantly higher compared to the oldest group, age 65 years or older, with the same exposure lags
(− 0.7%, non‐significant). However, individuals aged 65 years or older did show significant joint effects for
respiratory morbidity on CHWF lag1,3 (AP 10.3%, 95% CI 2.3%–18.3%, p= 0.006) that was not significantly less
than the effect for 18–49 years of age group (AP 12.9%, 95% CI − 1− 27%, p = 0.035) and much higher than the
50–64 year old age group (AP 1%, non‐significant). On CHWF lag3,0, older adults, 50–64 years of age, showed a
significant proportion of respiratory morbidity was attributable to interaction of wildfire smoke and extreme heat
(AP 11.7%, 95% CI 1.4%–22.1%, p = 0.013), which was similar among the other age groups, 18–49 years (11.1%
95% CI − 3.4%− 25.6%, p = 0.067) and ≥65 years (AP 5.9% 95% CI − 1.9%–13.7%, p = 0.070).

Joint effects for cerebrovascular morbidity were higher among older adults, age 50–64 years, on CHWF lag1,3
(AP 6.6%, 95% CI − 0.6%− 13.8%, p = 0.036) compared to the oldest group, 65 years of age and over, (− 1.1%,
non‐significant) and young adults 18–49 years of age (− 6.7%, non‐significant). Individuals aged 50–64 years
consistently showed significant joint effects for cerebrovascular morbidity across other combinations of exposure
lag as well, with a tendency to increase in effect size from smoke lag 0 to 3. On the other hand, joint effects for
cardiovascular morbidity were largest among the oldest age group, 65 years and older (AP, CHWF lag2,0 7.4%,

Figure 2. Heat map of attributable proportion of respiratory morbidity due to the interaction of extreme heat and wildfire smoke by outcome of interest in California, May
through November 2011–2019. Models were stratified by individual and community level characteristics. Different combinations of exposure lags were modeled
separately. Preferred language spoken is abbreviated as PLS. Estimates with less than 10 cases exposed were suppressed, shown in gray.
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95% CI 2.3%–12.5%, p = 0.002). Additionally, a significantly higher proportion of cardiovascular morbidities
were attributable to interaction within this age group, adults ≥65 years (5.7%, 95% CI 1.1%–10.4%, p= 0.008), on
CHWF lag3,0 compared to adults aged 50–64 years (− 4.3%, non‐significant). The additive effects for renal
morbidities differed between adults aged 50–64 years and ≥65 years; however, due to small numbers, results for
renal morbidity in the 18–49 years age group were suppressed. Among the two age groups compared, the pro-
portion of renal morbidities attributable to interaction was larger for adults aged 50–64 years (AP, CHWF lag0,3
15.5% 95% CI − 1.6%− 32.6%, p = 0.038 compared to a non‐significant 0.2% among adults ≥65 years of age).

3.1.3. Preferred Language Spoken

We also examined joint effects by patient's preferred language reported at hospital admission. The case population
was predominantly English speakers (85.1%; Table 1); thus, there were few cases exposed to wildfire smoke and
extreme heat within the Spanish and Other language groups. We suppressed results with less than 10 exposed
cases within the subgroup, which limits many of the results reported for Other and Spanish language preference.
The effects within the English‐speaking subpopulation generally reflect the effects showed among total study
population and comparison to other language strata is limited due to small numbers. However, we do show the
proportion of cerebrovascular morbidity attributable to interaction of wildfire smoke and extreme heat is sig-
nificant among Spanish speakers on multiple exposure lag combinations, and effects are much larger compared to
English speakers. For example, on CHWF lag3,0, 10.7% of cerebrovascular morbidities were attributable to the

Figure 3. Heat map of attributable proportion of cardiovascular morbidity due to the interaction of extreme heat and wildfire smoke by outcome of interest in California,
May through November 2011–2019. Models were stratified by individual and community level characteristics. Different combinations of exposure lags were modeled
separately. Preferred language spoken is abbreviated as PLS. Estimates with less than 10 cases exposed were suppressed, shown in gray.

GeoHealth 10.1029/2024GH001237

JONES‐NGO ET AL. 9 of 20



interaction among Spanish speakers (95% CI − 1.5%− 22.9%, p= 0.0428; Table S3 in Supporting Information S1)
compared to a non‐significant 1.9% among English speakers.

3.1.4. Race and Ethnicity

There were race groups with too few individuals to measure effects within all cause‐specific endpoints and
exposure groups. Results for the “Other” race group are not reported due to small cells. Additionally, results for
cardiovascular, renal, and respiratory morbidities in Asian (N = 47 effect estimates) and Black (N = 27 effect
estimates) subgroups were suppressed. We found that the joint effects of wildfire smoke and extreme heat were
most pronounced for Black individuals. This subgroup experienced the largest additive effects for respiratory
(AP, CHWF lag0,3 19.2%, 95% CI 6.5%–32.1%, p = 0.0016; Table S3 in Supporting Information S1) and ce-
rebrovascular morbidities (AP, CHWF lag0,3 15.7%, 95% CI 4%–27.4%, p = 0.0042; Table S3 in Supporting
Information S1) across all analyses. In comparison, cerebrovascular effects were significantly smaller for White,
non‐Hispanic individuals (2.3%) and respiratory effects were smaller for Hispanic individuals (− 5.3%).

Patterns for cardiovascular morbidities suggest that Black individuals were primarily exposed to heat during lags
0 and 1, with limited exposure on lags 2 and 3. This may be due to harvesting effects, where individuals who will
get sick succumb to cardiovascular morbidities sooner following a heat exposure. As a result, the burden of
cardiovascular morbidity may change over time as individuals have already succumbed to illness. Similarly,

Figure 4. Heat map of attributable proportion of renal morbidity due to the interaction of extreme heat and wildfire smoke by outcome of interest in California, May
through November 2011–2019. Models were stratified by individual and community level characteristics. Different combinations of exposure lags were modeled
separately. Preferred language spoken is abbreviated as PLS. Estimates with less than 10 cases exposed were suppressed, shown in gray.
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respiratory morbidities were not observed for heat lag 3, particularly for exposures to smoke prior to
hospitalization.

In contrast, the pattern for cerebrovascular morbidities shows a distinct increase in effects across smoke lag 0 to 3,
suggesting exposure to wildfire smoke 3 days prior is a potential driver in this synergistic effect within the Black
subgroup. Additionally, our findings indicate a significant protective effect for cardiovascular morbidities among
Black individuals on CHWF lag0,3 (AP, − 32.3%, 95% CI − 68.4%–3.7%, p = 0.0394; Table S3 in Supporting
Information S1). The additive effect has a wide confidence interval, although this effect does persist on the
multiplicative scale as well (Multiplicative, 0.75, 95% CI 0.58–0.99, p = 0.045; Table S4 in Supporting Infor-
mation S1). In this instance, the effect of extreme heat, without wildfire smoke, shows a strong, significantly
increased risk of cardiovascular morbidity by roughly 22% (OR 1.22, 95% CI 1.02–1.46, p = 0.0293; Table S5 in
Supporting Information S1). Yet, when exploring the opposite: the effect of wildfire smoke without extreme heat,
and the interaction between extreme heat and wildfire smoke, the findings were null effects. The data may be
insufficient to fully estimate the joint effects of extreme heat and wildfire smoke on cardiovascular morbidity
among Black individuals, who represent approximately 10.5% of total cardiovascular cases.

Both White (CHWF lag1,3 and lag2,3) and Hispanic (CHWF lag3,2) subgroups showed that roughly 10% of renal
morbidities were attributable to the interaction of wildfire smoke and extreme heat. Additionally, the additive
effects for cardiovascular morbidity on CHWF lag3,0 were slightly higher for White individuals (7.7%) compared
to Hispanic individuals (4.8%), though the difference was not statistically significant.

Figure 5. Heat map of attributable proportion of cerebrovascular morbidity due to the interaction of extreme heat and wildfire smoke by outcome of interest in California,
May through November 2011–2019. Models were stratified by individual and community level characteristics. Different combinations of exposure lags were modeled
separately. Preferred language spoken is abbreviated as PLS. Estimates with less than 10 cases exposed were suppressed, shown in gray.
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3.1.5. Household Poverty, ZCTA Level

Significant additive effects for ZCTAs with higher proportion of households living under poverty (≥25%) were
found for cardiovascular (AP, CHWF lag0,0 7.2%, 95% CI − 1.1%− 15.5%, p= 0.045) and respiratory (AP, CHWF
lag1,1 10%, 95% CI 0.02%–20%, p = 0.025) morbidity, limited to a few combinations of exposure lags. The
cardiovascular and respiratory effects were smaller (0.07% and 2.3%, respectively) for ZCTAs with lesser poverty
(<25% of households living under poverty), although not significantly different. Most cases (81.2%) resided in
ZCTAs with lesser poverty.

3.1.6. Educational Attainment, ZCTA Level

Nearly 70% of cases resided in ZCTAs where more than 50% of the population had higher than a high school
education. Findings in this group were different than those in ZCTAs having lower education. For instance, higher
education ZCTAs showed larger additive effects for respiratory morbidity (AP, CHWF lag0,3 12% 95% CI 4.5%–
19.4%, p < 0.001) compared to lower education ZCTAs (AP, CHWF lag0,3 3%, non‐significant) across multiple
exposure lag combinations. In contrast, lower education ZCTAs showed larger and significant joint effects for
cardiovascular and renal morbidity. Around 9% of cardiovascular morbidities in lower education ZCTAs were
attributed to interaction of wildfire smoke and extreme heat, compared to 4.3% in higher education ZCTAs for the
same exposure lags. Furthermore, renal morbidity risks were significantly larger among the lower education
group (13.4%) compared to higher education group (2.1%).

3.1.7. Rural and Urban Typology, ZCTA Level

Most cases resided in predominantly urban ZCTAs (97.2%); thus, the data was not sufficient to estimate joint
effects of wildfire smoke and extreme heat in rural populations.

3.2. Sensitivity Analyses

We examined different definitions for extreme heat and wildfire smoke exposure, including binary and contin-
uous estimates. Table 2 summarizes the distribution of cases for binary indicators. Models testing the different
cutoffs for extreme heat days (90th, 95th, and 99th percentiles) showed effects of extreme heat followed a dose
response, with larger effects for higher temperature exposure days. Effects were diminished for the 90th
percentile, particularly for renal morbidities, suggesting risks may be underestimated. On the other hand, the 99th
percentile cutoffs were too conservative for the range of Tmax. There were few cases with exposure to wildfire
smoke above 12 μg/m3. Using a continuous estimate of WF‐Influenced PM2.5 with heat defined by the 95th
percentile provided tighter confidence intervals for effect estimates compared to a binary indicator where WF‐
Influenced PM2.5 is greater than zero.

Table 2
The Number of Exposed Cases and the Corresponding Percentage of Total Cases for Each Outcome Group That Were
Exposed by Definitions for Extreme Heat (Heat) and Wildfire Smoke (Smoke)

Number of exposed cases (Percentage of total cases exposed)

All‐natural Respiratory Cardiovascular Cerebrovascular Renal

Heat defintions

90th percentile 2,861,563 (10.1%) 4,828 (9.6%) 6,548 (10.2%) 9,078 (10.1%) 3,449 (10.4%)

95th percentile 1,463,144 (5.2%) 2,442 (4.9%) 3,305 (5.2%) 4,559 (5.1%) 1,775 (5.3%)

99th percentile 340,093 (1.2%) 560 (1.1%) 779 (1.2%) 1,036 (1.2%) 408 (1.2%)

Smoke defintions

>0 μg/m3 703,709 (2.5%) 894 (1.8%) 1,508 (2.4%) 2,278 (2.5%) 662 (2.0%)

>12 μg/m3 36,065 (0.1%) 38 (0.1%) 79 (0.1%) 114 (0.1%) 28 (0.1%)

Note. Cutoffs include the month‐ and ZCTA‐specific 90th, 95th, and 99th percentile thresholds for heat and WF‐Influenced
PM2.5 values above 0 and 12 μg/m3.
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We further tested the sensitivity of our models to meaningful differences during the study period. While ICD
coding systems changed from 2015 to 2016, there were additional disruptions in exposure and outcome char-
acterization: medical diagnoses for renal morbidities were systematically refined (Watzlaf et al., 2007), and there
were different patterns of extreme heat and wildfire smoke activity. Models subset to 2011 to 2015 and 2016 to
2019 both show additive effects for respiratory morbidity, though the effects are larger in 2011–2015. We found
significant additive effects for cardiovascular morbidity from 2016 to 2019 and significant additive effects for
cerebrovascular morbidity from 2011 to 2015. However, the patterns of effects across exposure lags were
analogous. These results do not fully control for all differences between these two timeframes, that is, change in
coding, diagnostic practices, and exposures. Nonetheless, these findings provide a general sense that the re-
lationships between the outcomes and exposures are robust.

Exposures to compound hazards were highest in 2017 and 2020. However, the COVID‐19 pandemic beginning in
2020 potentially influenced risk behaviors, health care utilization, and ambient air pollution. Results testing
models for these years separately showed significant sub‐additive interactions for cerebrovascular, renal, and
respiratory morbidities in 2020. In contrast, we found significant super‐additive effects for cardiovascular and
respiratory morbidities in 2017. For example, during the pandemic we show a sub‐additive effect of − 12% (95%
CI –26%–0%, p = 0.030 for respiratory morbidity on CHWF lag0,1), while in 2017 the same exposure lag and
outcome showed a super‐additive effect of 8% (95% CI 0%–16%, p = 0.030 for respiratory morbidity on CHWF
lag0,1). Pandemic‐related factors, such as change in healthcare utilization, adoption of health protective behaviors,
and sheltering in place, likely contribute to the difference in joint effects of wildfire smoke and extreme heat. We
lack individual level data on these factors; thus, models for primary analysis were restricted to 2011 to 2019.

We also tested the sensitivity of restricting the analysis to wildfire and extreme heat seasons, May through
November, by examining effects for all months. The pattern of effects across exposure lags and outcomes of
interest were preserved, although effects in the seasonal months were slightly stronger (Tables S1 and S6 in
Supporting Information S1). For example, the same respiratory effect on CHWF lag0,3 shows the attributable
proportion due to interaction (AP) is slightly higher at 8.1%, while the estimate for all months, 5.5%, is still well
within the 95% confidence interval range, 2.3%–13.8% (p = 0.003; Table S1 in Supporting Information S1).

Analyzing effects within summer months improved characterization of extreme heat events. The average Tmax on
days above the 95th percentile cutoff for all months from 2011 to 2020 was 76.4° Fahrenheit, whereas average
Tmax above this cutoff when restricting to May through November was 82.9°. Other studies suggest joint effects
may be inconsistent across all months due to differences in adaptive behaviors or hazards, and burdens are
greatest during the summer season (Analitis et al., 2018; Austin et al., 2021).

4. Discussion
California is confronting an emerging threat of compounding climate hazards. Longer and more severe wildfire
seasons are increasingly exposing populations to both extreme heat and wildfire smoke (Masri et al., 2022;
Rosenthal et al., 2022). Our study found that compound wildfire smoke and extreme heat synergistically impact
health, with impacts varying by cause‐specific outcome, exposure lags, and population subgroups. This area of
compound hazard research has been advanced by estimation of wildfire‐related PM2.5. For instance, our study
uses a direct estimate of the influence of wildfire smoke on PM2.5, (i.e., WF‐Influenced PM2.5), which was
modeled based on empirical knowledge of wildfire smoke (HMS Smoke product) and exceedances of expected
smoke‐free concentrations. There are limited studies on the effects of wildfire smoke and extreme heat, and fewer
that account for the specific contributions of wildfire smoke to PM2.5 estimates.

Chen et al. (2024) similarly found synergistic effects on cardiorespiratory hospitalizations in California from
2006 to 2019. Authors examined exposures to wildfire smoke and extreme heat on the same day using a similar
measure of wildfire‐specific PM2.5, which combines estimates from air quality monitors, meteorological data, and
the HMS smoke product for wildfire smoke contributions (Aguilera et al., 2023). In contrast, other studies have
shown joint effects of wildfire‐related air pollution and extreme heat for all‐cause, cardiovascular, and respiratory
mortalities (Rahman et al., 2022), as well as emergency department admissions (Patel et al., 2019) by examining
high concentrations of PM2.5, which authors suggest are attributable to wildfire activity. One study goes so far as
to correlate days with high concentrations of PM2.5 with wildfire events (Rahman et al., 2022).
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Additionally, prior studies on the combination of wildfire smoke and extreme heat exposures during short‐term
exposure lag windows have only assessed exposures on the same lag days. We thoroughly examined compound
exposures within a short‐term exposure lag window, testing 16 different combinations of exposure lags.
Importantly, multiple hazard exposure on the same day does not necessarily dictate the effects. Rather, different
combinations of exposure within a short‐term window can have joint health effects. The inconsistency in findings
across lag combinations is likely reflective of the natural variability in the co‐occurrence of heat and smoke
exposures, which do not follow a predictable pattern. Unlike independent exposures, where a clear physiologic or
behavioral response dictates the timing between exposure and health event, the combined effects of heat and
smoke on health may be influenced by complex, less predictable interactions.

For instance, we note that effects of extreme heat, without wildfire smoke, were most often significant on heat lag
days 0 and 2. This pattern was particularly apparent among renal morbidities. We also observed significant effects
of wildfire smoke, without extreme heat, often on smoke lag days 2 and 3. The differences in the associations of
lag days for these individual effects suggest it is important to consider the different combinations of exposure lags
when estimating joint effects. Our results show significant effects of different combinations of wildfire smoke and
extreme heat exposure and cause‐specific morbidities. These findings indicate that exposure consideration should
not be limited to days when both hazards have occurred, but rather short‐term periods that capture multiple
hazards.

This study provides evidence for the joint effects of wildfire smoke and extreme heat on both multiplicative and
additive scales for cardiovascular, cerebrovascular, renal, and respiratory morbidities. Effects for all‐natural cause
morbidity were all small and close to null. However, we found that cause‐specific end points showed joint effects
that differed across exposure lags and population subgroups. Prior literature shows these outcomes have varied
associations when looking at wildfire smoke and extreme heat exposures independently.

There is extensive literature showing significantly increased risk for hospitalizations of respiratory morbidities
associated with wildfire smoke exposure (Cascio, 2018; Reid, Brauer, et al., 2016). Similarly, hot days have been
linked to increased risk of respiratory morbidity, as noted in a review and meta‐analysis of extreme temperatures
and cardiorespiratory morbidity (Turner et al., 2012). Our findings extend this knowledge by demonstrating that
when hazards compound, the effects of wildfire smoke and extreme heat lead to super additive and multiplicative
interactions that further elevate the risk of respiratory morbidities. Furthermore, a study of extreme heat in New
York projects the burden of respiratory admissions due to extreme heat will increase by roughly 2 to 6 times in
2080–2099 compared to 1991–2004 (Lin et al., 2012). While few studies estimate future respiratory health
impacts of wildfire smoke under climate change scenarios, current evidence suggests increasing exposures to
wildfire smoke will lead to growing respiratory impacts (Reid & Maestas, 2019). This underscores the need to
consider how climate change might affect the observed joint effects of wildfire smoke and extreme heat.

In contrast to respiratory morbidities, Turner's meta‐analysis found the relationship between extreme tempera-
tures and cardiovascular morbidity was less clear, finding few studies, which show no effects (Turner et al., 2012).
A more recent review and meta‐analysis from 2016 found the relationship between heat exposure, using heat
thresholds like the metric in our study, and cardiovascular morbidities was inconsistent, although significant risks
from heat waves were reported (Phung et al., 2016). Other studies have shown more consistent links between
extreme heat and cardiovascular mortality compared to morbidity (Phung et al., 2016; Åström et al., 2011).
Although cardiovascular morbidity risk is not commonly reported in heat studies, a recent review from Chen
et al. (2021) on wildfire smoke and cardiovascular health found many studies (25 out of the 38 retrieved) showing
increased risks for cardiovascular morbidities. Our results add emphasis to this by identifying synergistic effects
of extreme heat and wildfire smoke on cardiovascular morbidities.

Regarding renal health, there is a lack of evidence for the impact of wildfire smoke on renal health. One study
shows increased mortality in a vulnerable population of hemodialysis patients with end stage kidney disease
exposed to wildfire PM2.5 (Xi et al., 2020). To our knowledge, no studies have been published exploring the risk
of wildfire smoke and renal morbidity in the general population. There is, however, extensive evidence of the
impact extreme heat and heat waves have on renal health (Johnson et al., 2019). The kidneys serve a critical role in
protecting individuals from heat and dehydration. They do this by maintaining adequate blood volume. When a
person experiences heat stress or heatstroke, the kidneys can become overwhelmed, leading to decreased
circulating blood volume, resulting in kidney dysfunction. Our study found near‐significant joint effects of

GeoHealth 10.1029/2024GH001237

JONES‐NGO ET AL. 14 of 20



wildfire smoke and extreme heat on renal morbidity, with more pronounced effects revealed in subgroup analyses
by race and ethnicity, preferred language, and educational attainment.

Lastly, while there is limited evidence on the association between wildfire smoke and cerebrovascular risks,
Wettstein et al. (2023) identified increased cerebrovascular risks associated with wildfire smoke in a similar
population of California hospitalizations. Evidence for cerebrovascular health associations with extreme heat is
more extensive (Åström et al., 2011; Bunker et al., 2016; Zhang et al., 2014), although not always consistent
(Zorrilla‐Vaca et al., 2017). Our results highlight the importance of further investigating the differential impacts
of wildfire smoke and extreme heat on cerebrovascular morbidities, particularly within population subgroups.

Joint effects differed by individual and community level factors. For example, effect estimates for renal morbidity
were stronger and significant for the oldest age group, English speakers, White and Hispanic individuals, and
ZCTAs with lower educational attainment and higher proportions of households living under poverty.We also did
not find joint effects of wildfire smoke and extreme heat on cerebrovascular morbidities among the study pop-
ulation but found significant super additive and multiplicative interactions within subgroups. This includes a
moderate portion of cerebrovascular morbidities attributable to interaction for the Black subpopulation. This
analysis also shows significant joint effects on cerebrovascular morbidities for White, young to middle aged and
older adult, and English preferred language groups.

Cardiovascular and respiratory effects differed in stratified analyses as well. For instance, joint effects for car-
diovascular morbidity were stronger within the Black and female subgroups, whereas respiratory joint effects
were stronger in males. Prior single hazard assessments have also shown disparate impacts for these health
outcomes across similar sociodemographic characteristics, including sex, age, education, and income (Rappold
et al., 2012; Reid et al., 2009, 2016b). Our study shows joint effects of wildfire smoke and extreme heat differ
across individual and community level risk factors. Differences may be driven or modified by underlying vul-
nerabilities, social or place‐based disadvantages, and risk behaviors.

Sex‐differences found in our study show females had higher joint effects for cardiovascular morbidity. Car-
diovascular disease is the leading cause of death for women, and with a higher prevalence than men (Appelman
et al., 2015). Female‐specific biologic risk factors, including preeclampsia, gestational diabetes and menopause
onset, and differences in the effects of behavioral risk factors contribute to increased cardiovascular risks for
women (Appelman et al., 2015). Males, however, were found to have higher joint effects for risk of respiratory
morbidity in our study. Shin et al. (2022) also found higher risk of respiratory hospitalization due to air pollution
exposure in males compared to females during the summer months (Shin et al., 2022). These findings suggest that
differences may be due to many factors, including physiologic structures, lifestyle, and underlying inflammatory
diseases. For instance, a survey of activity patterns found men spend more time in outdoor environments (Matz
et al., 2014), which may suggest greater exposures to outdoor air pollutants and extreme temperatures.

Differences in biologic risk and risk behaviors may also explain differential joint effects by age. There is sub-
stantial literature indicating that older populations have higher risks of health impacts to extreme heat and wildfire
smoke, independently (Åström et al., 2011; Cascio, 2018; Liu et al., 2017; Zhang et al., 2014). The findings of
joint effects for young to middle aged and older adults are also of interest. Increased risks for respiratory mor-
bidities were present across all age groups. However, it is plausible that risk behaviors, underlying comorbidities,
and physiologic health are contributing to this effect differently among age groups (Deeks et al., 2009).

It is also possible that differential effects by individual characteristics, such as language preference and race and
ethnicity, may serve as proxies for social disadvantages. For instance, language preferences can influence access
to risk information, an important predictor for the adoption of health protective behaviors. However, in-
terpretations of effects for individuals with a language preference of Spanish and other than English or Spanish in
our study are limited due to small number of exposed cases. We are not able to determine if this plays a role in the
joint effects of wildfire smoke and extreme heat.

However, race and ethnicity effects are also deeply influenced by socioeconomic status and often interpreted in
environmental epidemiologic literature to be driven by inequalities among race groups and systemic racism.
Minority populations often carry a higher burden of environmental exposures and health impacts. Our results
show the strongest joint effects of wildfire smoke and extreme heat within the Black subpopulation; although,
some of the effects for Black and other minority race groups had to be suppressed, and thus the interpretations are
limited.
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Neighborhood‐level characteristics can also shed light on the relationship of joint effects of wildfire smoke and
extreme heat with socioeconomic conditions and often related, the capacity to adapt. Chen et al. (2024) found
spatial heterogeneity in the joint effects of wildfire smoke and extreme heat on cardiorespiratory morbidity.
Similarly, they show higher risks in California ZCTAs with greater disadvantages, such as lower income, lower
educational attainment, higher minority race populations, and reduced green spaces. This spatial heterogeneity in
effects has also been shown for respiratory health impacts of wildfire smoke across California ZCTAs (Do
et al., 2024). Educational attainment and household poverty status are frequently associated with greater envi-
ronmental exposure burdens and impacts (Bao et al., 2015; Bell & Keita, 2012; Curriero et al., 2002; Rappold
et al., 2012; Reid et al., 2009). Those living in poverty often do not have the capacity to afford mitigations (Bao
et al., 2015). We did not observe significant differences in the joint effects among communities living in ZCTAs
with more households living under the poverty. Our results, however, do show a moderate effect on renal
morbidity for ZCTAs where 50% or more of the population obtained a high school education or less. Prior
research shows education is a key determinant of renal health outcomes as it can predict occupation, income, and
adoption of health protective behaviors (Lombardi et al., 2021;Mirowsky&Ross, 2015). Our results for the lower
education group suggest socioeconomic conditions may be a key determinant for the joint effects of wildfire
smoke and extreme heat on renal morbidity. However, differences relating to social and place‐based disadvan-
tages should be investigated further.

Further, we investigated the joint effects of wildfire smoke and extreme heat by rural and urban typologies.
Exposure predominantly covered urban areas; thus, we could not estimate effects in rural areas. Urban areas may
be more susceptible to these compound events due to the urban heat island effect (Chapman et al., 2017).
Additionally, densely populated urban areas present a critical concern for exposure risks.

There are some limitations to this study that should be considered. Exposure misclassification may occur when
assigning exposure to residential ZCTA as it roughly approximates exposure and the individual's location during
exposure periods. Additionally, the ZCTA geography is a spatial unit that provides information regarding where
individuals live (Graham et al., 2015), but primarily serves as an arbitrary unit for postal routes. There is wide
variation in the geographic size and population density between ZCTAs. Similar to our approach, other envi-
ronmental epidemiologic studies have used ZIP Code level analyses in California with adjustments for population
distribution within the ZIP Code (Delfino et al., 2009; Guirguis et al., 2018; Knowlton et al., 2009; Riley
et al., 2018). We aimed to minimize exposure misclassification by estimating exposure at the ZCTA level based
on population distribution.

Furthermore, ZCTA characteristics such as educational attainment, percent living in poverty, and rural and urban
typology may serve as proximate indicators of vulnerability, influencing both exposure and health outcomes. For
example, ZCTAs with lower educational attainment or higher poverty levels may have different vulnerability
profiles to environmental hazards, which could be confounded by other factors not captured in this study (e.g.,
access to healthcare, housing quality, or local environmental conditions). We used binary stratification of ZCTAs
based on these characteristics to examine joint effects, but future research should consider more granular or
individualized measures of exposure and account for these potentially confounding factors.

We also cannot assess whether individuals adopted health protective behaviors to mitigate exposure. For instance,
staying indoors, reducing outdoor physical activity, or using air filtration and air conditioning devices are ex-
amples of behavioral modifications that may influence an individual's exposure to extreme heat or wildfire smoke.
Additionally, this study examines single days of extreme temperature and wildfire smoke, rather than consecutive
days, that is, heat waves and smoke waves. Rosenthal et al. (2022) found co‐occurrence of heat waves and smoke
waves captured a higher degree of exposure, thus, health effects may be stronger. Further research could
investigate how health effects may differ with consecutive or cumulative days of exposure.

We also did not observe meaningful effects for all‐natural cause morbidity, which may be due to the broad range
of conditions included in this category, each of which may have different relationships to wildfire smoke and
extreme heat. Additionally, the type of hospital admission (e.g., emergency, urgent, or prescheduled) could in-
fluence these outcomes. Prescheduled hospitalizations, in particular, may have a different relationship with
exposure, as individuals may already have planned admissions, and while they could still experience exposure,
the timing and context of exposure (e.g., in a hospital setting rather than in the community) may alter its impact
compared to emergency or urgent admissions. Lastly, joint effects analysis requires larger sample sizes than
independent association analyses. Despite some of the highest combined exposures to wildfire smoke and
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extreme heat in 2020, we excluded 2020 data from the primary and stratified analyses due to effects of the
COVID‐19 pandemic. Thus, exposures within some population subgroups were too small to estimate joint effects.
With increasing wildfire activity and extreme heat events, researchers should investigate more recent years of
compound wildfire and extreme heat events in California.

Future investigations could explore the relationship between apparent temperature, which accounts for humidity,
wildfire smoke, and health outcomes, given that California's climate is becoming more humid (Gershunov &
Guirguis, 2012). Likewise, air pollutants, like ozone, may also play a role in the joint effects for extreme heat and
wildfire smoke. Incorporating ozone into these analyses may further explain some of the effects we observed.
Lastly, we examined wildfire smoke and extreme heat events compounding within a short‐term period. Future
studies could consider different spatial and temporal components of compound effects, including the effects of
events compounding response resources at larger geographic scales rather than just among compounding exposed
populations.

5. Conclusions
This study shows worsening wildfire and extreme heat events in California are leading to stronger morbidity
effects due to compound wildfire smoke and extreme heat. Disparities in the joint effects of wildfire smoke and
extreme heat highlight the need to target interventions for populations at greater risk, which varies by outcome. It
is also important to consider how these effects may be influenced by a changing climate. These extremes are
expected to increase; thus, attention should focus on assessing strategies to jointly mitigate risks.
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