
# Part 5.1 Urban climate Fundamentals

Most common modeling approaches

## Heinke Schünzen (Universität Hamburg)

17.02.2021 / web lecture

heinke.schluenzen@uni-hamburg.de

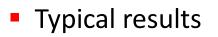


CL-UHI maximum intensity in dependence on city population. Figure idea based on Oke (1973; Atm. Env. 7, 769-779); values from multiple publications, Figure by Schlünzen (2021).

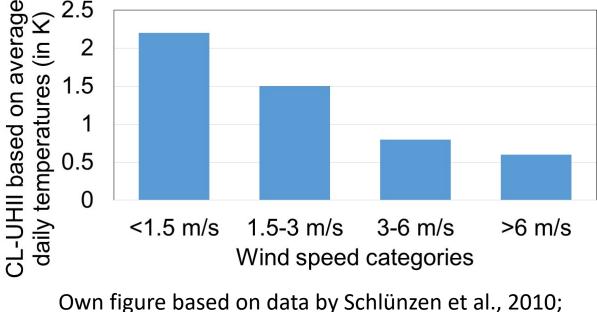


EXZELLENZCLUSTER CLIMATE, CLIMATIC CHANGE, AND SOCIETY (CLICCS)

#### Statistical modeling of UHII


- Number of inhabitants explains too little of UHII.
- Essential elements need to be considered.
- Statistical model based on measurements.






### Statistical modeling of UHII

- Number of inhabitants explains too little of UHII.
- Essential elements need to be considered.
- Statistical model based on measurements.



- Larger wind speed → smaller CL-UHII.
- Low day time / high night cloud cover
   → larger CL-UHII.
- (e.g. Hoffmann et al., 2010; doi:10.1002/joc.2348)



doi: 10.1002/joc.1968





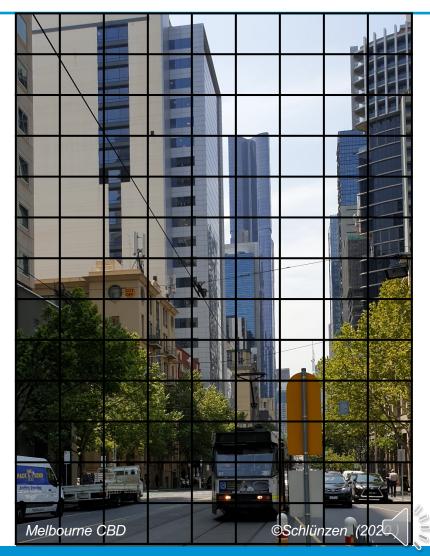
#### Numerical modeling approaches

#### - differences in how to consider effects of the urban canopy layer (UCL)

| Туре                                                      | +                                                                                                                                                                                                                                         | -                                                                                                                                                                        |
|-----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Roughness length/<br>single layer UCL<br>parameterization | <ul> <li>Traditional model approach<br/>(weather forecast &amp; climate models).</li> <li>Fast to integrate.</li> </ul>                                                                                                                   | <ul> <li>Results not at e.g. 2 m.</li> <li>Vertical interpolation (empirical functions, displacement height, sub-surface).</li> </ul>                                    |
| Multi-layer UCL parameterization                          | <ul> <li>Vertical heat, moisture, momentum<br/>radiation fluxes calculated within UCL.</li> <li>Vertical changes in heat storage and<br/>anthropogenic heat emission considered.</li> <li>High vertical resolution (&lt; 5 m).</li> </ul> | <ul> <li>Intermediate computing resources (time step).</li> <li>In further development.</li> </ul>                                                                       |
| UCL resolving                                             | <ul> <li>Each building / tree realistically included.</li> <li>Fluxes in 3D.</li> <li>Lowest level &lt; 3 m, direct result use.</li> </ul>                                                                                                | <ul> <li>Large computing resources (time and space wise).</li> <li>In development (e.g. nesting not always available, no humidity fluxes, not precipitation).</li> </ul> |

Table based on Schlünzen, Grimmond, Baklanov (edts):

"Guidance to Measuring, Modelling and Monitoring the Canopy Layer Urban Heat Island". WMO (2021, in preparation).






EXZELLENZCLUSTER CLIMATE, CLIMATIC CHANGE, AND SOCIETY (CLICCS)

#### What model type to use

- Depends on the purpose of the assessment.
- Statistical models are fast and can be applied to future climate (if urban fabric is the same).
- Numerical models are more resources consuming, and allow
  - assessment of urban development scenarios in current and future climate,
  - temperature and UHII calculations at different heights.
- Using observations / models, you have to know about the data quality and representativeness (space and time).

