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What this study adds:
This manuscript describes a simulation study based on a real 
data example that compares two popular statistical methods 
for estimating the population mortality effect in the context 
of extreme or rare exposures. This type of analysis is becom-
ing increasingly relevant as climate change literature seeks to 
quantify the effect of rare, extreme weather events using existing 
epidemiologic methodologies. Choosing the most appropriate 
method for the task at hand is an important part of research 
on how to improve public health and inform policy related to 
extreme weather events and climate change.

Efficiency of case-crossover versus time-series 
study designs for extreme heat exposures
Caleb Schimke a,*, Erika Garcia a, Sam J. Silvaa,b, Sandrah P. Eckela

Background: Time-stratified case-crossover (CC) and Poisson time series (TS) are two popular methods for relating acute health 
outcomes to time-varying ubiquitous environmental exposures. Our aim is to compare the performance of these methods in estimat-
ing associations with rare, extreme heat exposures and mortality—an increasingly relevant exposure in our changing climate.
Methods: Daily mortality data were simulated in various scenarios similar to observed Los Angeles County data from 2014 to 2019 
(N = 367,712 deaths). We treated observed temperature as either a continuous or dichotomized variable and controlled for day of 
week and a smooth function of time. Five temperature dichotomization cutoffs between the 80th and 99th percentile were chosen to 
investigate the effects of extreme heat events. In each of 10,000 simulations, the CC and several TS models with varying degrees of 
freedom for time were fit to the data. We reported bias, variance, and relative efficiency (ratio of variance for a “reference” TS method 
to variance of another method) of temperature association estimates.
Results: CC estimates had larger uncertainty than TS methods, with the relative efficiency of CC ranging from 91% under the 80th 
percentile cutoff to 80% under the 99th percentile cutoff. As previously reported, methods best capturing data-generating time trends 
generally had the least bias. Additionally, TS estimates for observed Los Angeles data were larger with less uncertainty.
Conclusions: We provided new evidence that, compared with TS, CC has increasingly poor efficiency for rarer exposures in eco-
logical study settings with shared, regional exposures, regardless of underlying time trends. Analysts should consider these results 
when applying either TS or CC methods.
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Introduction
Under climate change, it is crucial to understand the health 
effects of extreme weather events, which are occurring more fre-
quently and increasing in intensity. Heat records were broken in 
all continents in 2022, the year with the highest global tempera-
tures in 100,000 years.1 Extreme heat events produce extensive 
and well-documented excess mortality, as in the case of the 2003 

heatwave in Europe and North Africa.2,3 Much of the statistical 
methodology for studying the association of exposures such as 
air temperature with various health effects have been adopted 
from the well-established field of air pollution epidemiology. 
However, the performance of these methods for extreme and rare 
exposures has not been fully explored.

Exposure to ambient air pollution, with informative day-to-
day variability, is different from exposure to extreme weather, 
which happens infrequently by definition. Here, we describe two 
methods that have been adapted from the field of air pollution 
epidemiology and used to study the health effects of extreme 
weather exposures. Ecological time-series (TS) analysis with 
Poisson regression (denoted henceforth as TS) relates transient 
exposures to total counts of acute outcomes collected at regu-
lar intervals for a defined population. Because the location(s) 
serves as its own control, there is no need to control for time- 
constant confounders. Control for time-varying confounders can 
be achieved by including a smooth function of time (e.g., using 
a regression spline like a natural cubic spline) in the Poisson 
regression model.4,5 A crucial and greatly influential decision 
in these models is how flexible to make these smooths (i.e., 
choosing the number of degrees of freedom [df]), since under-
smoothing can result in residual confounding for time-varying 
confounders and oversmoothing can blunt associations with the 
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time-varying exposure.6 Case-crossover (CC) studies relate tran-
sient exposures within a short-term referent window to an acute 
outcome on a participant-by-participant basis. Time-invariant 
factors, such as age, gender, and health status, are controlled for 
by only making within-participant comparisons.7 Time-stratified 
CC studies with conditional logistic regression controls for time 
trends by design through selecting each participant’s reference 
window according to which day of week (dow), month, and 
year their outcome occurred (i.e., all Mondays during January 
2015). Other CC study designs define the reference window 
differently, such as the symmetric bidirectional (SB) design that 
selects two or more equidistant time points on either side of the 
index day. While CC designs are naturally extendable to sce-
narios in which participant-level data are available, TS mod-
els using individualized data, such as case TS, are not as easily 
implemented and have not been explored in this context. TS and 
CC methods have been compared in other contexts, particularly 
in air pollution research,8,9 but not in the context of extreme 
weather events. There are concerns about CC designs being less 
efficient, resulting in more uncertain estimates as compared with 
TS, with a prior report showing that the SB CC design had 66% 
of the efficiency of TS under certain scenarios.9 There is a further 
concern that the problem of reduced efficiency could be ampli-
fied for binary indicators of extreme weather in CC studies, 
where case and control periods with identical exposure values 
drop out of the traditional estimation approach of conditional 
logistic regression, providing no information to the analysis.10

In this article, we evaluate and compare the performance of 
TS and CC methods in estimating the association of extreme 
heat with health in a simulation study and using observed data. 
We selected extreme heat as an example of “extreme weather” 
because it is one of the most well-studied extreme exposures 
in health studies.11 Using observed daily temperature data and 
associations with mortality in Los Angeles (LA) County in the 
years 2015–2016 as our motivation, we generated synthetic 
mortality data from observed temperature data under several 
data-generating scenarios. In particular, we dichotomized tem-
perature at the 80th to 99th percentiles to evaluate the impact 
of increasingly rare exposure extremes. As these rare events 
become more frequent and intense in our changing climate, effi-
ciently estimating their public health impact using data avail-
able today will become increasingly important.

Methods

Mortality data

Death certificate data for all causes of death between 1 January 
2014 and 31 December 2019 were obtained from the California 
Department of Public Health’s Vital Statistics. A TS of daily 
total all-cause mortality in LA County was produced by sum-
ming the number of deaths among decedents with LA listed as 
their county of residence on each day. The use of these data 
was approved by the Committee for the Protection of Human 
Subjects of California (California Health and Human Services 
Agency’s Federalwide Assurance #00000681).

Temperature data

Daily 1-hour minimum temperature (Tmin, °C) data were 
obtained from the GridMet spatiotemporal reanalysis model of 
meteorological data, which estimates Tmin at a spatial resolu-
tion of 4 × 4 km grid.12,13 The daily Tmin exposure data used in 
this study were calculated by taking the aggregate mean Tmin 
across all census tracts within LA County. Based on the distri-
bution of daily Tmin in LA County during the study period, 
we defined extreme heat days as those in the top 80th, 90th, 
95th, 97.5th, or 99th percentiles, similar to prior literature.12,14 
In total, we considered six different versions of the temperature 

variable: continuous Tmin and the five increasingly rare binary 
variables, referred to generically as xt.

Statistical methods

For TS analyses, Poisson regression was used to relate mortality 
counts on the day t, yt (mean µt), to that day’s temperature, xt, 
while controlling for time-varying confounders as follows:

log (µt) = α+ βxt + s (t, df) + dow, where yt ∼ Poisson (µt) . (1)

We controlled for seasonality/long-term time trends using a nat-
ural cubic spline, s(), of time with a defined number of df as well 
as for indicators for dow. Estimates of β quantify the log-relative 
risk of mortality associated with a 1 °C higher daily Tmin or for 
dichotomized temperature days with “high” versus “low” Tmin.

For CC analyses, the time-stratified referent scheme was used 
as our primary approach, which has become widely adopted 
over other schemes, such as the SB scheme.7 In the time-stratified 
CC approach, for the participant i, the date of death is the case 
day, and all dates on the same dow and within the same month 
and year as the case day are selected as control days. The referent 
window contains one case day (yij = 1) and three or four con-
trol days (yij = 0), depending on the month. Traditionally, con-
ditional logistic regression is then used to model the association 
between the temperatures and binary outcome status on case and 
control days within the referent window, conditional on referent 
windows ξi as follows:

 logit(P(yij = 1|xij, ..., ξi)) = ξi + β1xi,j. (2)

No adjustments for dow or long-term trends are necessary 
because they are controlled for by design.7 In practice, data 
management and computation for this approach are computa-
tionally intensive and necessitate an expanded format dataset 
with yt number of rows for each case and referent day. We will 
denote this method as CCex. Equivalent alternative approaches 
have been identified, including conditional logistic regression 
using weights to represent multiple cases on the same day 
(denoted CCwtd)

15,16 as well as a conditional Poisson regression 
model in the TS format (denoted CCCP):

 log (µt) = α+ βxt + stratum,where yt ∼ Poisson (µt) , (3)

where stratum indicates a unique intercept for each referent win-
dow that are conditioned out as nuisance parameters using the 
“eliminate” argument of the gnm function in the gnm package 
of the R programming language (R Foundation for Statistical 
Computing, Vienna, Austria).16 Advantages of this model include 
not just the improved computational efficiency and speed but 
also the ability to calculate the overdispersion parameter using 
quasi-Poisson regression and the ability to access model-checking 
tools not available to most conditional logistic regression func-
tions. We used CCCP as the primary CC method in this work and 
demonstrated that results from CCex and CCwtd are equivalent 
(Table S3; http://links.lww.com/EE/A328). Finally, to facilitate 
a direct comparison of our work with the prior literature,9 we 
used an earlier version of the CC referent selection strategy, the 
SB design, which selects control days symmetrically in multiples 
of 7 days on either side of the case day. We evaluated both a 
1-week (CCSB1) as well as a 1- and 2-week SB (CCSB2) (Table S3; 
http://links.lww.com/EE/A328). Example R code for performing 
CCCP and TS models is provided in supplementary material (R 
Codes; http://links.lww.com/ EE/A328).

Simulation study based on a real data example

Data-generating scenarios

Expected daily mortality was generated based on observed daily 
temperature and mortality associations in LA County (Figure 1) 

http://links.lww.com/EE/A328
http://links.lww.com/EE/A328
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under two time trend scenarios: smooth (a la TS, black line 
in Figure 1) and stratification by month and dow (a la time- 
stratified CC, gray line in Figure 1). For the smooth time trend, 
a TS model (Eq’n 1) was fit to the observed LA County mortal-
ity and temperatures, controlling for time with a natural cubic 
spline for time having between 1 and 12 df/year, based on which 
value minimized the Bayesian Information Criterion (BIC). For 
the stratification by month and dow time trend, a time-stratified 
CC model was fit to the observed LA County mortality and tem-
peratures (Eq’n 3). Model fitting for each scenario was repeated 
six times each, one for each version of xt. For the TS models 
on observed LA County data, 8 df minimized BIC for each ver-
sion of xt. Additional adjustment for an indicator of holidays 
had little impact on the estimated association from the model 
for observed data (results not shown). The estimated associa-
tion between observed temperature and mortality, β, for the TS 
models ranged from 0.004 for continuous Tmin to 0.066 for the 
99th percentile dichotomization of Tmin (Table 1). In our pri-
mary simulation study, we generated expected mortality counts, 
E (yt), using Eq’n 1 or Eq’n 3 by holding β fixed at 0.04 for all 
six versions of xt but using values for the other regression coef-
ficients (i.e., spline, dow, and stratum terms) based on what was 
estimated in the observed LA County data for each scenario and 
version of xt. Hence, we held the magnitude of the true associa-
tion constant but varied how rare the temperature exposure was. 
In secondary analyses, expected mortality counts were generated 
using the unaltered values of β listed in Table 1 that correspond 
to each version of xt, allowing the exposure to become both 
more rare and to have larger associations. In summary, expected 
mortality was calculated under four data-generating scenarios 
for each version of xt: TS model with β fixed at 0.04 for all xt 

(Scenario 1); time-stratified CC model with β fixed at 0.04 for all 
xt (Scenario 2); TS model with a different β for each xt (Scenario 
3); and time-stratified CC model with a different β for each xt 
(Scenario 4). Our primary simulation study used Scenarios 1 and 
2 and our secondary simulation study used Scenarios 3 and 4. 
Expected daily mortality counts were input as the mean E (yt) 
of a random Poisson distribution generator to generate synthetic 
daily mortality for each scenario and version of xt. This method 
for generating simulated data enables us to preserve realistic, 
complex exposure patterns while manipulating the data so that 
the underlying effects are known.17–19 We also fit models to the 
original data as an example implementation in a real-life study.

Methods considered

We evaluated the performance of the following methods: TS mod-
els with a natural cubic spline having 8 df/year (TS8, equal to df 
used to generate simulated data in Scenarios 1 and 3), 4 df/year 
(TS4, an underfitted model), or a dynamically chosen number of 
df/year that minimizes BIC (TSDyn, mimics the real-life situation 
where df is estimated from the data)4; time-stratified CC models 
using a computationally efficient method (CCCP) as well as supple-
mentary analysis methods using more traditional implementations 
(CCwtd and CCex, described in the Statistical Methods section).20 
Also included in supplementary simulation study results are those 
from a SB referent scheme,9 including 1-week (CCSB1) or 1- and 
2-week (CCSB2) models. In summary, the primary simulation study 
used four methods: TS8, TS4, TSDyn, and CCCP.

Number of simulated datasets

For each data-generating scenario and version of xt, 10,000 
datasets were generated. This number is sufficient to estimate 
all relevant performance measures (bias, coverage, power, model 
variance) with Monte Carlo standard error (SE) reduced to a 
negligible magnitude. Random seeds were saved for internal 
reproducibility. The first 10 rows of an example simulated data-
set can be found in Table S1; http://links.lww.com/EE/ A328. 
Secondary/sensitivity analyses using the models CCwtd, CCex, 
CCSB1, and CCSB2 were tested in 100 simulations for Scenario 1 
only (Table S3; http://links.lww.com/EE/A328).

Evaluation

Each method was used to estimate β, the association of tem-
perature and mortality, and its SE on each simulated data-
set. Results were summarized across the 10,000 replications. 
Performance measures of primary interest included bias and 
variance. Specifically, we reported relative average bias, defined 

Figure 1. Daily minimum temperature (A) and daily mortality counts (b) in LA County, California from 1 January 2014 to 31 December 2019. Triangles mark 
days at or above the 99th percentile of daily minimum temperatures. Predicted daily mortality from two models are plotted with different colors: TS with a natural 
cubic spline of 8 degrees of freedom (black) and time-stratified CC (gray). Plotted values are for a reference day of the week (Sunday) for clarity of visualization.

Table 1.

Application of methods to observed data from LA county

Time series,  
8 df/year (TS8)

Time-stratified 
case-crossover 

(CCCP)

Relative efficiencyTemperature variable β̂ SE β̂ SE

Continuous 0.0044 0.0006 0.0026 0.0007 0.90
80th 0.0259 0.0068 0.0173 0.0072 0.89
90th 0.0298 0.0071 0.0190 0.0078 0.83
95th 0.0487 0.0087 0.0384 0.0094 0.86
97.5th 0.0463 0.0115 0.0357 0.0127 0.82
99th 0.0662 0.0172 0.0560 0.0193 0.80

Estimated associations of daily minimum temperature (Tmin), defined as continuous Tmin or a 
percentile-based dichotomization (xt ), with daily all-cause mortality counts in LA County, CA from 1 
January 2014 to 31 December 2019. Relative efficiency is calculated according to SE2TS8/SE

2
CC.

http://links.lww.com/EE/A328
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as the average across all 10,000 datasets of: 
Ä
β̂ − β

ä
/β. We 

reported relative efficiency, consistent with prior literature,9 
defined as the ratio of the mean variances of β from each 
method relative to the mean-variance of β from an arbitrary 
reference method, TS8 (i.e., SE2

TS8/SE2CCCP). Computation 
was done on the University of Southern California’s high- 
performance computing cluster at the Center for Advanced 
Research Computing.

Results

Simulation study

As expected, bias depended on the data-generating scenario. 
Under Scenario 1 (Figure 2A), the TS8 model produced estimates 
with negligible bias (relative average bias across temperature 
variables: −5.6e−05% to −3.8e−03%) while the TS4 model esti-
mates using fewer df had positive bias (1.6% to 21%) and the 
CCCP estimates had negative bias (−16 to −3.8%). Conversely, 
under Scenario 2 (Figure 2B), the CCCP model produced the least 

biased estimates, while the TS model estimates tended to have 
positive bias.

Regardless of the data-generating mechanism, CCCP estimates 
had larger uncertainty than TS methods. This is reflected in the 
lower relative efficiency for CCCP compared with TS models, 
with declines in relative efficiency as the temperature variable 
xt becomes more rare (Figure 3). The more parsimonious TS4 
model had the highest relative efficiency across all versions of 
xt (102%–138%), but approached the efficiency of TS8 as xt 
became more rare. The CCCP model had worse relative efficiency 
across all xt (80%–91%), worsening as xt became more rare. 
While both CCSB1 and CCSB2 had similar declines in efficiency 
as xt became more rare, relative efficiency for CCSB1 was worse 
(70%–80%) than CC or CCSB2 (85%–102%) (Table S3; http://
links.lww.com/EE/A328). Comparing statistical power for TS8 
under Scenario 1 and CCCP under Scenario 2, both methods have 
>99% power using continuous, and 80th, 90th, and 95th percen-
tile cutoffs for xt. However, TS8 has greater power than CCCP at 
the higher cutoffs for xt, (i.e., 97.5th percentile: 93% vs. 88%; 
99th percentile: 63% vs. 54%).

Figure 2. Relative average bias for four methods under data-generating Scenario 1 (A) and Scenario 2 (B), with panels for each version of the daily minimum 
temperature variable. cts, continuous; numbers are percentile cutoffs for increasingly rare exposures.

Figure 3. Relative efficiency for four methods under data-generating Scenario 1 (A) and Scenario 2 (B), with panels for each version of the daily minimum tem-
perature variable. cts, continuous; numbers are percentile cutoffs for increasingly rare exposures.

http://links.lww.com/EE/A328
http://links.lww.com/EE/A328
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In Scenarios 3 and 4, the magnitude of the relative aver-
age bias was smaller, but all trends in both relative average 
bias (Figure S1; http://links.lww.com/EE/A328) and relative 
efficiency (Figure S2; http://links.lww.com/EE/A328) were 
identical to the trends in Figures 2 and 3, respectively. Finally, 
our results for CCCP were identical whether using the condi-
tional logistic regression approach using weights for mortality 
counts (CCwtd) or using the traditional approach (CCex; Table 
S3; http://links.lww.com/EE/A328). Comprehensive numeric 
simulation study results are provided in Table S2; http://links.
lww.com/EE/A328.

Los Angeles County data analysis

There were 367,712 all-cause deaths in LA County from 1 
January 2014 to 31 December 2019, and the average daily 
Tmin was 11.39 °C (standard deviation: 6.16 °C). When 
applying both TS8 and CCCP methods to data in LA County 
we found that a 1 °C higher daily Tmin was associated with a 
0.44% (95% confidence interval [CI]: 0.31%, 0.56%) increase 
in mortality according to TS8 and a 0.26% (95% CI: 0.13%, 
0.39%) increase in mortality according to CCCP (Table 1). 
Using the 99th percentile cutoff for dichotomization, extremely 
hot days were associated with a 6.8% (95% CI: 3.3%, 10.5%) 
increase in mortality according to TS and a 5.6% (95% CI: 
1.9%, 9.8%) increase in mortality according to CCCP. CCCP 
estimates were all smaller in magnitude and had larger SEs 
than TS8 estimates.

Insights into the reduced efficiency of CC methods may be 
gained by noting that for a dichotomous xt, the only infor-
mative strata in a conditional regression are those containing 
at least one, but not all, days with extreme exposure. In LA 
County, for the 99th percentile of daily Tmin, only 4.2% of 
strata (21/504) had at least one extremely hot day (Table 2). 
Additionally, multiple extreme temperature days were fre-
quently observed within a given strata (i.e., >1 of the case or 
control days had an extreme temperature), which would vio-
late the transience of exposure assumption if these are from 
the same heatwave event. For example, using extreme heat at 
the 90th percentile, we observed nine heat waves from 2014 
to 2019 that were >7 days in duration, including one that 
stretched 24 days.

Discussion
We compared the performance of TS and CC methods in esti-
mating the effects on mortality of extreme daily Tmin days in a 
simulation study based on data from LA County. CC was less 
statistically efficient (i.e., larger uncertainty of the estimated 
association) compared with TS, especially as the extreme expo-
sures considered were increasingly rare. CC with rare exposures 

uses only a small fraction of the total dataset since strata not 
containing the rare exposure are dropped out in conditional 
regression models. We found that both methods yielded biased 
estimates when inadequately controlling for time trends, as has 
been previously reported.4,7,8,21 When analyzing observed data in 
LA County, both methods estimated qualitatively similar asso-
ciations, with larger association estimates and smaller SE for 
the TS method as compared to the CC method, in line with our 
simulation study results under both assumed data-generating 
scenarios.

The efficiency of TS and CC methods has been studied pre-
viously in air pollution epidemiology settings.15,21,22 Bateson 
and Schwartz9 conducted a simulation study for daily TS data, 
which included a comparison of the efficiency of TS and CC 
methods for both a continuous and binary exposure variable 
with a prevalence of 25% using versions of these methods 
popular at the time. Across various data-generating scenar-
ios with different assumptions about seasonal and long-term 
time trends, they found that CC estimates had larger variance 
than Poisson regression, with relative efficiencies (variance of 
Poisson/variance of CC) ranging from 0.65 to 0.69, with no 
difference found between continuous and binary exposures. 
The CC sampling design used in their work was the 1-week 
SB design, similar to CCSB1 in our study.21,22 Our simulations 
using the more modern time-stratified CC version found rel-
ative efficiencies in the same direction but less extreme, likely 
because the time-stratified referent sampling scheme includes a 
larger number of control days (three or four) versus the two 
in the CCSB1 design, providing improved efficiency. Our simu-
lations using CCSB1 had relative efficiencies closer in magnitude 
to those reported in Bateson and Schwartz. Our simulations 
provide new evidence that when a binary exposure variable is 
increasingly rare, this impacts the efficiency of CC models rel-
ative to TS models. Time-stratified CC and TS methods with a 
regression spline for time were also compared for estimating 
the association of particulate matter air pollution with mortality 
in a simulation by Lu et al.8 They found that a quasi-Poisson  
TS model with greater df (12 df/year) had approximately the 
same efficiency as the time-stratified CC model, but a TS model 
with smaller df (4 df/year) yielded greater efficiency than either 
other method. Our results corroborate their findings in the con-
text of rare, dichotomized environmental exposures and show 
how these findings can be generalized to other types of expo-
sures. Specifically, our results show that relative efficiencies of 
all TS models with differing df converge to a similar value as 
xt becomes increasingly rare, while the relative efficiency of the 
time-stratified CC model decreases. It follows that the number 
of df included in the regression spline in a TS model does not 
account for all of the differences in uncertainty between TS and 
CC models when assessing the association of rare exposures. 
Hence, the efficiency of these methods and the choice of study 
design should take into consideration the rarity of exposure. Of 
note, the choice of df for TS has important implications for bias, 
regardless of the rarity of the exposure, but appears to have less 
impact on efficiency for the most rare exposures.

Either TS or CC methods can yield biased estimates when 
inadequately controlling for time trends4,7,8 and our results 
corroborate these findings. CC designs are said to control for 
time-varying confounders by design by only making within- 
participant comparisons around a short frame of time. However, 
residual seasonal confounding and day-to-day variation in con-
founding variables need to be accounted for separately.21 A TS 
analysis must carefully control for seasonality and day-to-day 
variation (i.e., using BIC to select between optimal df in a nat-
ural cubic spline of time) trying to avoid overfitting or underfit-
ting time trends.6 Worries about residual seasonal confounding 
of both methods have led some to limit their analyses to only 
a few months out of the year, as in Sun et al. and Gasparrini  
et al.23,24

Table 2.

Dropping out of data in case-crossover method

Temperature 
variable

All-
cause 

deaths, n

Unique strata 
included, n  

(% of continuous)

Unique strata with 
multiple days with 

extreme temperature

Continuous 367,712 504 N/Aa

80th 116,100 170 (33.7 %) 126
90th 83,653 122 (24.2 %) 63
95th 58,149 83 (16.4 %) 24
97.5th 33,582 47 (9.3 %) 7
99th 14,916 21 (4.2%) 1

Number of unique strata (referent windows including case day plus 3 or 4 referent days) in time-
stratified CC analyses using daily minimum temperature (Tmin), defined as continuous Tmin or a 
percentile-based dichotomization (xt ), in LA County, CA from 1 January 2014 to 31 December 2019. 
aNot applicable under continuous temperature with no designated extreme temperature days.

http://links.lww.com/EE/A328
http://links.lww.com/EE/A328
http://links.lww.com/EE/A328
http://links.lww.com/EE/A328
http://links.lww.com/EE/A328
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Our study has several strengths. First, we conducted a realistic 
simulation study based on observed data in LA County, a location 
with a large population that experience days with extreme heat. 
Second, in our simulations, we fixed the association between 
the exposure, confounders, and the outcome to target only the 
increasing rarity of exposure days or both increasingly rare and 
extreme associations. Third, the data-generating scenarios used 
represented time trends similar to assumptions underlying TS 
(Scenarios 1 and 3) or time-stratified CC approaches (Scenarios 
2 and 4). Fourth, we used the conditional Poisson implementa-
tion of CC that requires no complicated data management, is 
computationally efficient, and is equivalent to traditional con-
ditional logistic regression implementations. Additional advan-
tages of this approach are that it can be extended to account for 
overdispersed (quasi-Poisson), autocorrelated count data, and 
subject-level covariates and exposures.16,20 Future work could 
extend the comparison to CC using individualized exposures 
and multisite or participant-level TS. Finally, while we focused 
on extreme heat as our exemplar exposure, our methodological 
findings apply to other extreme weather exposures.

Our study has several limitations and raises issues requir-
ing further research. First, our study only addresses day-to-day 
variation in extreme heat exposure. Heatwaves often occur 
over consecutive days and may violate assumptions regarding 
the transience of exposure for both TS and CC methods. This 
problem will be exacerbated by the increasing intensity and 
duration of heat waves expected under the changing climate.25 
More sophisticated definitions of extreme heat events, such as 
consecutive extremely hot days, or making use of rolling aver-
ages should be considered, as well as alternatives to TS and CC 
methods that focus on exposure event(s), such as studies of 
excess mortality from specific events.26 Our study used percen-
tile thresholds to define extreme heat based on the concept of 
acclimatization. Thresholds for extreme heat based on absolute 
values (e.g., days exceeding 43 °C daily maximum) could also be 
explored, but the general methodological findings in our simula-
tion study will still apply. We considered dichotomized tempera-
ture variables for simplicity, but the performance of nonlinear 
effect estimation for continuous temperature variables could 
also be studied. We used the Poisson distribution both to gen-
erate mortality data and Poisson regression to estimate asso-
ciations (similar to prior literature9) rather than quasi-Poisson 
regression, which is a generalization that includes an overdisper-
sion parameter allowing for the variance to be unequal to the 
mean and can increase estimation uncertainty. We compared our 
results to those of Lu et al., who compared quasi-Poisson TS to 
CC and they found the standard deviation of the quasi-Poisson 
TS was slightly larger than CC for a greater df (12 df/year), and 
considerably smaller for a smaller df (4 df/year). Another simpli-
fication that we made was to only assess the effect of extremely 
high temperatures on mortality, not extremely low tempera-
tures. This was informed by studies that attribute small impacts 
on mortality for cold temperatures in LA County.27 Finally, the 
impacts of heat on mortality vary by factors such as participant 
age, air conditioning access/use, and time-varying covariates 
such as humidity, which were not considered since our study 
focused on the main effect of heat exposure and our synthetic 
mortality datasets assumed no effect modification.

In conclusion, our study provides insight into two promi-
nent statistical methodology choices for use in future studies 
of extreme temperatures, one of the most commonly studied 
climate-related hazards.11,27 However, our findings also extend 
to other climate change and health studies relating extreme 
and rare exposures to large, temporally-resolved administrative 
health datasets. In practice, CC has been used to estimate the 
effect of rare weather and air pollution exposures.3,12,23,28 As 
the climate continues to change, extreme weather events will 
become more frequent and intense.1 Researchers studying these 
events should consider both TS and CC approaches to carefully 
decide which method is most applicable to their data and most 

appropriate for their intended research question. TS approaches 
can provide more precise estimates based on the rare extreme 
exposure data available today to project public health impacts 
of the future increasingly common extreme exposures, assuming 
appropriate control for time trends.

Conflicts of interest statement
The authors declare that they have no conflicts of interest with 
regard to the content of this report.

References
 1 Romanello M, Napoli CD, Green C, et al. The 2023 report of the 

Lancet Countdown on health and climate change: the imperative for 
a health-centred response in a world facing irreversible harms. Lancet. 
2023;402:2346–2394.

 2 Fouillet A, Rey G, Laurent F, et al. Excess mortality related to the 
August 2003 heat wave in France. Int Arch Occup Environ Health. 
2006;80:16–24.

 3 Saucy A, Ragettli MS, Vienneau D, et al. The role of extreme tempera-
ture in cause-specific acute cardiovascular mortality in Switzerland: a 
case-crossover study. Sci Total Environ. 2021;790:147958.

 4 Bhaskaran K, Gasparrini A, Hajat S, Smeeth L, Armstrong B. Time series 
regression studies in environmental epidemiology. Int J Epidemiol. 
2013;42:1187–1195.

 5 Perperoglou A, Sauerbrei W, Abrahamowicz M, Schmid M. A review 
of spline function procedures in R. BMC Med Res Methodol. 
2019;19:46.

 6 Peng RD, Dominici F, Louis TA. Model choice in time series studies of air 
pollution and mortality. J R Stat Soc Ser A Stat Soc. 2006;169:179–203.

 7 Janes H, Sheppard L, Lumley T. Case-crossover analyses of air pollution 
exposure data: referent selection strategies and their implications for 
bias. Epidemiology. 2005;16:717–726.

 8 Lu Y, Symons JM, Geyh AS, Zeger SL. An approach to checking 
case-crossover analyses based on equivalence with time-series methods. 
Epidemiology. 2008;19:169–175.

 9 Bateson TF, Schwartz J. Control for seasonal variation and time trend 
in case-crossover studies of acute effects of environmental exposures. 
Epidemiology. 1999;10:539–544.

 10 Carracedo-Martínez E, Taracido M, Tobias A, Saez M, Figueiras A. 
Case-crossover analysis of air pollution health effects: a systematic 
review of methodology and application. Environ Health Perspect. 
2010;118:1173–1182.

 11 Harper SL, Cunsolo A, Babujee A, et al. Trends and gaps in cli-
mate change and health research in North America. Environ Res. 
2021;199:111205.

 12 Rahman MM, McConnell R, Schlaerth H, et al. The effects of coexpo-
sure to extremes of heat and particulate air pollution on mortality in 
California: implications for climate change. Am J Respir Crit Care Med. 
2022;206:1117–1127.

 13 Abatzoglou JT. Development of gridded surface meteorological 
data for ecological applications and modelling. Int J Climatol. 
2013;33:121–131.

 14 Medina-Ramón M, Zanobetti A, Cavanagh DP, Schwartz J. Extreme 
temperatures and mortality: assessing effect modification by personal 
characteristics and specific cause of death in a multi-city case-only anal-
ysis. Environ Health Perspect. 2006;114:1331–1336.

 15 Fung KY, Krewski D, Chen Y, Burnett R, Cakmak S. Comparison of time 
series and case-crossover analyses of air pollution and hospital admis-
sion data. Int J Epidemiol. 2003;32:1064–1070.

 16 Wu Y, Li S, Guo Y. Space-time-stratified case-crossover design in envi-
ronmental epidemiology study. Health Data Sci. 2021;2021:9870798.

 17 Friedrich S, Friede T. On the role of benchmarking data sets and simula-
tions in method comparison studies. Biom J. 2024;66:e2200212.

 18 Dionisio KL, Chang HH, Baxter LK. A simulation study to quantify 
the impacts of exposure measurement error on air pollution health 
risk estimates in copollutant time-series models. Environ Health. 
2016;15:114.

 19 Boulesteix A-L, Groenwold RH, Abrahamowicz M, et al; STRATOS 
Simulation Panel. Introduction to statistical simulations in health 
research. BMJ Open. 2020;10:e039921.

 20 Lu Y, Zeger SL. On the equivalence of case-crossover and time 
series methods in environmental epidemiology. Biostatistics. 
2007;8:337–344.



Schimke et al. • Environmental Epidemiology (2025) 9:e370 www.environmentalepidemiology.com

7

 21 Whitaker HJ, Hocine MN, Farrington CP. On case‐crossover 
methods for environmental time series data. Environmetrics. 
2006;18:157–171.

 22 Bateson TF, Schwartz J. Selection bias and confounding in case- 
crossover analyses of environmental time-series data. Epidemiology. 
2001;12:654–661.

 23 Sun S, Weinberger KR, Nori-Sarma A, et al. Ambient heat and risks of 
emergency department visits among adults in the United States: time 
stratified case crossover study. BMJ. 2021;375:e065653.

 24 Gasparrini A, Guo Y, Hashizume M, et al. Changes in susceptibility 
to heat during the summer: a multicountry analysis. Am J Epidemiol. 
2016;183:1027–1036.

 25 Calvin K, Dasgupta D, Krinner G, et al. IPCC, 2023: Climate 
Change 2023: Synthesis Report. Contribution of Working Groups 

I, II and III to the Sixth Assessment Report of the Intergovernmental 
Panel on Climate Change [core writing team, H. Lee and J. Romero 
(eds.)]. Intergovernmental Panel on Climate Change (IPCC); 2023. 
doi:10.59327/ipcc/ar6-9789291691647.

 26 Hoshiko S, English P, Smith D, Trent R. A simple method for estimating 
excess mortality due to heat waves, as applied to the 2006 California 
heat wave. Int J Public Health. 2010;55:133–137.

 27 Weinberger KR, Haykin L, Eliot MN, Schwartz JD, Gasparrini A, 
Wellenius GA. Projected temperature-related deaths in ten large U.S. 
metropolitan areas under different climate change scenarios. Environ 
Int. 2017;107:196–204.

 28 Wilson LA, Morgan GG, Hanigan IC, et al. The impact of heat on mor-
tality and morbidity in the Greater Metropolitan Sydney Region: a case 
crossover analysis. Environ Health. 2013;12:98.


