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Abstract
As global studies of climate change depict increasingly dire outcomes of extreme heat, 
there is an urgent need to understand the appropriateness of heatwave definitions and 
temperature datasets in different parts of the world. We carry out an intercomparison of 
the CHIRTS gridded station-satellite temperature dataset with three reanalysis products, 
ERA5, NCEP-DOE Reanalysis 2, and MERRA2, to assess biases in the absolute value 
of extreme heat events and the distribution of extreme events. We find close agreement 
between all four datasets in the magnitude and distribution of extreme temperatures, with a 
cold bias in the reanalyses over mountainous areas. However, there is little to no agreement 
between datasets on the timing of extreme heat events in the tropics, and the datasets do 
not even agree on which month is the hottest month climatologically in these regions. Sec-
ond, we compare how the four datasets represent the frequency and timing of extreme heat 
events, using two different types of heatwave definitions: 5-day duration-based extremes 
and extreme temperature-humidity combinations (heat index). In the case of 5-day heat-
waves, there are almost zero events recorded historically in tropical regions. In contrast, 
high absolute values of the heat index are most common in dry climates, likely due to the 
dominance of high temperature spikes in these regions, and high heat index events also 
occur in temperate and tropical regions. There is little agreement between datasets, how-
ever, on when these extreme heat index events have happened historically in the tropics. 
Given these results, we highlight the need for locally developed heatwave metrics for dif-
ferent parts of the world, and we urge against the use of a single heatwave definition in 
global studies. We also recommend that any studies assessing heat-health relationships 
in tropical regions beware of the lack of agreement between observational and reanaly-
sis datasets and compare results from different gridded dataset products to estimate uncer-
tainty in heat-health relationships.
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1  Introduction

The increasing frequency and intensity of extreme heat is the most universal outcome 
of climate change across the world, and most of Earth’s land area has already observed 
increasing temperatures (IPCC 2022). Although extreme heat is an increasing concern, 
there is little information on the relative accuracy and usefulness of historical temperature 
datasets to characterize the behavior and change in extreme heat in different parts of the 
world. This is particularly true in the tropics, which have been the subject of fewer research 
studies on heat and heatwaves (Campbell et al. 2018).

In the extratropics, there is a large and growing literature on the dangers of heatwaves, 
with a ballooning evidence base that links observed extreme temperatures with societal 
outcomes (Marx et al. 2021). These studies often design bespoke heatwave indices to cap-
ture health outcomes, and these can include a set of consecutive days of temperature above 
a threshold as well as simultaneous heat-humidity indices (Smith et al. 2013). A meta-anal-
ysis of heatwave definitions in 2016 found a similar variety, with different combinations 
of maximum, minimum, and mean temperatures and durations found to relate to health 
outcomes in different parts of the world, as well as a variety of temperature plus humidity 
definitions, such as the heat index and apparent temperatures (Xu et al. 2016). Researchers 
working on that study recommended locally developed heatwave definitions to provide the 
most relevant indication of potential health outcomes.

Studies that have examined the relative frequency of different heatwave definitions in 
climate datasets have found that different definitions happen with higher frequency in dif-
ferent regions, and therefore, it cannot be assumed that a heatwave definition with a cer-
tain frequency in Canada would occur with the same frequency in Brazil. In a heatwave 
intercomparison over the USA, for example, Smith et al. (2013) found that the heat index 
using temperature and humidity was more frequently observed in the southwestern humid 
part of the country, while definitions focused on simple maximum temperatures were more 
frequent in other (often drier) regions. That study was a simple climatology of heatwave 
definitions, not linked to impacts in each region. Heo et al. (2019) did a similar comparison 
across South Korea, finding different frequencies of each definition in different regions of 
the country; they found that web-bulb globe temperature had the strongest link with health 
outcomes. Existing climate change projections of increases in humid heatwaves might also 
be underestimates, due to models’ inability to represent convective precipitation that influ-
ences these events (Birch et al. 2022).

WMO-WHO Heat Health Guidance identifies two broad types of heatwaves: dry heat-
waves in areas with a variable summer season and moist heatwaves that are associated 
with warm and humid conditions and nocturnal cloud cover that prevents cooling at night 
(World Health Organization 2018). This bifurcation of heatwaves into persistent (duration-
based) and humid heatwaves was also used by Domeisen et al. (2023) in their characteriza-
tion of the predictability of heatwaves. However, many studies characterizing heatwave risk 
globally use a single heatwave definition for the entire world (e.g., Chambers 2020).

Most heat-health research elucidates the relationship between temperature and outcomes 
in specific locations across the extratropics, with a high number of studies in Europe, North 
America, and Australia. This includes an emphasis on land-atmosphere feedbacks and 
periods of blocking and subsidence that influence the increase in hot extremes in these 
regions (e.g., Jeong et al. 2022; Salathé Jr et al. 2023; Wang et al. 2023). There is little 
research or documentation of heat impacts in Africa and many other tropical regions of the 
world (Harrington and Otto 2020). Because a global intercomparison of heatwave datasets 
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and definitions has never been done, there is no information on which of these definitions 
occur with which frequency in tropical and understudied regions. In fact, studies that have 
attempted to calculate the frequency of global heatwaves using multi-day heatwave defini-
tions have found few if any heatwaves in the tropics (e.g., Coughlan de Perez et al. 2018).

Even though there is a lack of heat-health studies in the tropics, many major studies 
highlight the tropics as an area of concern for extreme heat under climate change. Cof-
fel et  al. found that the tropics saw a greater number of exceedance of historical annual 
maximums in the future with climate change, compared to the rest of the world. However, 
they acknowledge that this is likely due to the low variability of temperatures in the tropics 
(Coffel et al. 2017).

It has become accepted practice to simply extrapolate studies about extreme temperature 
from the extratropics to the tropics, without any inquiry as to whether this is appropriate. 
For example, Mora et  al. (2017) carried out a large review of heatwave definitions and 
posited a universal deadly temperature-humidity relationship, but almost all of the stud-
ies reviewed came from the extratropics. The authors then present their main conclusion 
with a focus on the tropics, finding that their “universal” extreme heat definition will see 
the highest increases in tropical regions, and therefore, those regions are at high risk. At 
the time of writing, this paper had accumulated almost 1000 citations, and the results were 
featured prominently in an IPCC synthesis report key figure (reproduced here as Fig. 1), 
with a disclaimer that the data used to derive the heat-health relationship was mainly from 
the extratropics.

In order to better understand heat-health relationships in different climate zones of the 
world, we need further studies that connect climate extremes with human health outcomes. 
While there are several studies using station-based temperature records to derive heat-
health relationships in tropical regions, such as Faye et al. (2021), many efforts to under-
stand heat in tropical regions rely heavily on merged station-satellite gridded products and 
reanalysis data. However, there has been no intercomparison of these datasets for extreme 
heat, to understand how they differ in representing the most commonly used extreme heat 
indices.

Existing reanalysis comparisons tend to focus on average values, and Long et  al. 
2017 found that monthly mean temperatures over latitude zones were generally in agree-
ment among recent reanalyses (CFSR, MERRA, ERA-Interim, JRA-55, and MERRA-
2). There have been a few reanalysis intercomparisons for other types of extreme events, 
including wind (Torralba et  al. 2017), the hydrological cycle (Lorenz and Kunstmann 
2012), and atmospheric rivers (Collow et  al. 2022), but no global intercomparison for 
extreme heat. A recent study on heat extremes excluded regions in which there was a lack 

Fig. 1   Reproduction of the IPCC synthesis report summary for policymakers figure SPM3b (IPCC 2023)
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of consistency between the ERA5 and JRA55 reanalyses for extreme heat events, which 
included much of Africa (Thompson et al. 2023).

Therefore, the goal of this study is to carry out an intercomparison of extreme heat defi-
nitions in several observational and reanalysis datasets. First, we will compare how the 
reanalysis datasets represent the absolute value and shape of the distribution of extreme 
temperatures. Secondly, we will compare how the datasets represent the timing of extreme 
heat events, using two different types of heatwave definitions: long-duration extreme tem-
peratures and extreme temperature-humidity combinations. This intercomparison will ena-
ble researchers to understand the inherent limitations of our gridded temperature datasets 
in different regions of the world and set the stage for future research on the relationship 
between extreme heat and health outcomes in understudied regions.

2 � Methods

We will carry out an intercomparison of extreme heat in four commonly used gridded his-
torical temperature datasets. The Climate Hazards Center Infrared Temperature with Sta-
tions (CHIRTS) dataset is a merged station-satellite product widely used in data-sparse 
regions (Funk et al. 2019). This was developed by merging satellite and station data to gen-
erate a dataset of monthly maximum temperatures around the world. The dataset was then 
combined with ERA5 reanalysis data to create a timeseries of daily temperatures that align 
with the monthly maximums (Funk et al. 2019). Daily maximum temperature is available 
from 1983 to 2016 at a native resolution of 0.05°.

The other datasets analyzed here are reanalysis products, derived using a physically 
consistent climate model to create gridded datasets of many climate variables, including 
temperatures, aligned with the observational record. The first is ERA5 Land, which is a 
global reanalysis dataset at 9-km resolution over land areas, based on ERA5 (Hersbach 
et al. 2020; Muñoz-Sabater et al. 2021). The data is archived on an hourly basis at a resolu-
tion of 0.1°.

The other two reanalyses are MERRA2 and NCEP-DOE Reanalysis 2. MERRA2 is run 
at 0.5° latitude × 0.625° longitude resolution and archived every 6 h. The NCEP2 reanaly-
sis uses a gaussian grid of 1.875 × 1.904129 and is also archived every 6 h.

For this analysis, all datasets were regridded to the native resolution of the MERRA2 
dataset (0.5° lat × 0.625° lon) using bilinear interpolation. We used the full global extent 
of the CHIRTS data, which is all longitudes −180 to 180 and latitudes −60 to 70. For all 
datasets, we calculated the daily maximum values (Tmax) and annual maximum of daily 
maximum temperature (TXx) for the years 1983–2015, which are the years available in the 
CHIRTS dataset. We also calculated daily anomalies by subtracting the average value for 
that day of the year from all days in each time series.

To estimate the number of long-duration heatwaves, we use the WMO heatwave defini-
tion, which is “five or more consecutive days of prolonged heat in which the daily maxi-
mum temperature is higher than the average maximum temperature by 5°C (9 °F) or more.” 
The average maximum temperature is calculated as a daily threshold.

To estimate the number of humid heatwaves, we use the heat index (HI). The U.S. 
National Oceanic and Atmospheric Administration defines a heat index of 32–41°C as 
“extreme caution,” the range of 41–54 °C as “danger,” and over 54 °C as “extreme dan-
ger” with imminent risk of heat stroke (NOAA, The National Weather Service n.d.). Rela-
tive humidity is available for ERA5 and dewpoint temperature is available for the NCEP 
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reanalysis, and therefore, we use both of those reanalyses to calculate humid heatwaves at 
each timestep of the dataset and then derive the maximum and minimum HI value per day. 
Note that MERRA2 also produces dewpoint temperatures, but a validation check on this 
field identified errors such that we did not calculate humid heatwaves in that reanalysis 
dataset.

The heat index is a commonly used heatwave measure that converts temperature and 
humidity into an “apparent temperature” that adjusts the temperature based on the impact 
of humidity. This is similar in nature to many heat-humidity thresholds and related to sev-
eral physiological thresholds that incorporate heat, humidity, windspeeds, and sunlight 
(Anderson et al. 2013).

For the reanalysis intercomparison, we calculate statistical descriptors for the Tmax val-
ues (averages, standard deviations) and then calculate the temporal correlation in Tmax 
between the datasets. Lastly, we compare the frequency and timing of the long-duration 
heatwaves and the humid heatwaves between datasets. To characterize outcomes by climate 
region, we aggregate results using the Koppen-Geiger climatic zones (Kottek et al. 2006; 
Bryant et al. 2017).

3 � Results

3.1 � Intercomparison of Tmax averages

The CHIRTS and three reanalysis datasets show a strong agreement in the average of the 
daily maximum temperatures, with few differences between the reanalyses and CHIRTS 
(Fig. 2). The largest differences are seen over mountain ranges, with the reanalyses display-
ing a cool bias.

All of the datasets also agree strongly on the overall standard deviation of Tmax (Fig. 3). 
In the Arctic, the reanalyses overestimate the standard deviation relative to CHIRTS, and 

Fig. 2   Average of daily maximum temperatures 1983–2015. Absolute values are shown for a CHIRTS data-
set, and the difference between the reanalysis and CHIRTS is shown for b ERA5, c MERRA2, and d NCEP
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over most of the remaining land areas the reanalyses have a slight underestimation of the 
standard deviation in Tmax.

All datasets agree that there is a very small standard deviation of Tmax in the tropics. 
The “length of the tail” of Tmax or the difference between the 99.9th and 99.5th percentile 
(see Supplementary Figure 1) is between 0 and 2° in the tropics, while it can reach 6° in 
some parts of the extratropics.

3.2 � Intercomparison of the timings of Tmax and TXx

Despite the strong agreement in the magnitude and statistical distribution of Tmax val-
ues globally, CHIRTS and the three reanalysis datasets show a strong disagreement in the 
timing of the hottest events over much of the world. Figure 4 depicts the simple Pearson 
correlation in the timeseries of Tmax and TXx for 1983–2015. Because ERA5 is used to 
create the daily data in CHIRTS based on monthly maximums, these two datasets show the 
strongest agreements in their daily correlations. However, even in Fig. 4a, the correlation 
of Tmax between CHIRTS and ERA5, the tropics are less correlated than the extratrop-
ics. This is further pronounced in the correlations between other datasets, with almost no 
association between the Tmax data in CHIRTS and MERRA2 or NCEP over much of the 
tropics.

The extratropics demonstrate higher correlations between daily anomalies than the trop-
ics, with high disagreement also found in the Himalayan and Andean mountain ranges. 
Figure 4b, d, f also depicts the correlation between annual temperature maximums, TXx, in 
these datasets. The lack of correlation in the tropics, even for the CHIRTS-ERA5 datasets, 
becomes even further pronounced.

However, we find indications that the agreement between datasets has improved over 
time. Daily maximum temperature correlations between CHIRTS and the three reanalysis 
have improved over most geographies when comparing results from the first half of the 
time period (1983–1999) and the second half of the time period (2000–2015). Improve-
ments are most notable in the correlation between CHIRTS and NCEP, especially in the 
Himalayas. See Supplementary Information Figures SI-4 and SI-5 for details.

Fig. 3   Standard deviation of daily maximum temperatures 1983–2015. Absolute values are shown for a 
CHIRTS dataset, and the difference between the reanalysis and CHIRTS is shown for b ERA5, c MERRA2, 
and d NCEP
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This disagreement about extreme temperatures in tropical regions is further demon-
strated in the different annual climatologies of each dataset. We calculated the monthly 
average of Tmax for the time period of 1983–2015 and identified the month with the high-
est average Tmax value. Figure 5 shows the absolute value of the difference, in months, 
between the hottest month in each dataset. So for example, if ERA5 indicated that August 
was the hottest month in one location and CHIRTS indicated that June was the hottest 

Fig. 4   Correlations of daily and annual maximum temperature among the historical datasets, 1983–2015. 
a, c, e The correlation of daily Tmax anomalies between CHIRTS and each of the reanalysis datasets. b, 
d, f The correlation between annual maximum temperatures between CHIRTS and each of the reanalysis 
datasets

Fig. 5   Difference in monthly climatologies of Tmax (1983–2015). Each map depicts the number of months 
difference between the hottest month in the two datasets being compared
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month, this would be a difference of 2 months. While there is strong agreement again in 
the extratropics on the hottest month of the year, there is strong disagreement in the trop-
ics between all datasets, with some datasets even differing by 6 months in their climato-
logically hottest month of the year.

CHIRTS is derived in part from ERA5 data, and therefore, it is not surprising that 
Fig. 4a shows the highest correlations in daily Tmax anomalies between these datasets. 
However, Figs. 4b and 5a demonstrate discrepancies between these datasets in the cor-
relation of annual maximum temperatures and the yearly climatologies in some regions. 
CHIRTS uses satellite data to calibrate the absolute value temperature data, while rely-
ing on ERA5 for the temporal sequencing of events. Discrepancies between the datasets 
could happen in regions with low standard deviation in temperature (see Fig. 3a), where 
small changes in absolute values of temperature can affect the sequencing of the hottest 
years or months, or be regions in which CHIRTS and ERA5 have large absolute value 
differences, such as the Himalayan region highlighted in Fig. 2b.

3.3 � Intercomparison of heatwave events

Lastly, we compare the timing and frequency of heatwave events in these datasets, using 
both the long-duration definition (Fig.  6) and the heat-humidity definition (Fig.  8). The 
WMO heatwave definition, of 5 consecutive days in which Tmax is greater than the aver-
age Tmax by more than 5°C, occurs frequently in the extratropics. Over the time period of 
1983–2015, northern regions of the USA, Europe, and Asia experienced more than 100 of 
these events. However, most of the tropical regions of the world did not register even a sin-
gle heatwave using this definition in that time period (Fig. 6).

All observational datasets agree on the general spatial pattern of heatwave fre-
quency, and these general spatial patterns are consistent for shorter events. For 

Fig. 6   Number of heatwaves between 1983 and 2015 using the WMO definition of 5 consecutive days of 
temperature anomalies of 5° or greater. Black indicates regions that have no heatwaves on record using that 
definition
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example, if the duration is reduced to only 2 days (see Supplementary Information 
Figure  SI-2), more events are observed while retaining this general spatial pattern. 
For events of longer duration and smaller magnitude, CHIRTS and ERA5 produce 
similar spatial patterns with few events observed, and the MERRA2 and NCEP rea-
nalyses produce very few events anywhere in the world (Supplementary Information 
Figure SI-3).

For the extreme heat and humidity type of heatwave, we use the heat index, which 
calculates an “apparent temperature” by adjusting the air temperature based on the rela-
tive humidity in the ERA5 reanalysis and the NCEP reanalysis. The absolute values of 
the 99th percentile of the daily maximum heat index are unrealistic in some parts of 
the world in the NCEP reanalysis (Fig.  7b), and there is stronger agreement between 
ERA5 and NCEP in the 99.9th percentile of the daily minimum values of the heat index 
(Fig. 6c, d).

Areas of the world that register the highest absolute values of the HI are broadly con-
sistent between the two models, including Pakistan, northern Australia, parts of the Sahel, 
the Arabian Peninsula, and central South America. These are also the regions that show 
the highest frequency of exceeding dangerous heat index thresholds as their maximum 
daily value and have registered days in which the heat index does not fall below dangerous 
thresholds, such as 41.

As found in the intercomparison of extreme temperatures, there is little consistency 
between datasets in the timing of extreme heat index events in the tropics. Figure 8 depicts 
the simple Pearson correlation of daily heat index anomalies between ERA5 and NCEP 
reanalyses, which show strong correlations in the extratropics and weak correlations in the 
tropics. Correlations tend to be stronger for daily minimum heat index anomalies (Fig. 8d) 
than daily maximum heat index anomalies (Fig. 8c). Within each model, however, the cor-
relation between daily maximum and minimum heat index anomalies is weak in the tropics 
and strong in much of the extratropics (Fig. 8a, b), indicating that neither model is finding 
persistent high heat index values over the course of a day in the tropics. The annual maxi-
mum heat index event is also poorly correlated in much of the world, with the highest cor-
relations in the northern extratropics.

Fig. 7   99.9th percentile of the daily max and min heat index for the ERA5 and NCEP reanalyses. The 
99.9th percentile of the daily maximum value of HI is plotted in the top row for the a ERA5 and b NCEP 
reanalysis and for the daily minimum value of HI in the bottom row for c ERA5 and d NCEP. Note that the 
scales are different across the figures
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The regional differences in results are most apparent when aggregated across 
climate zones. Figure  9 depicts the average correlations in Figs.  4e and 8c across 
the Koppen-Geiger climate zones. Tropical regions have correlations averaging less 
than 0.5, while other regions of the world are higher than 0.75. Discrepancies by 
climate zone are also apparent in the count of heatwave events using the two defini-
tions explored here. Using the WMO definition of 5 consecutive days of high tem-
peratures, continental and polar regions of the world experience 80 and 90 events on 
average over the 1983–2015 period, while tropical regions experience almost no such 
events.

This is the opposite for extreme heat-humidity thresholds. Using a threshold value 
of 41°C (danger) for the heat index, regions classified as having a dry climate register 
an average of almost 300 events in the time period 1980–2021, while almost 0 events 
are recorded on average in the continental and polar climate regions. The ability for 
dry climate zones to reach high values of the heat index is likely due to the land sur-
face feedbacks that allow for high temperature spikes in these regions, and the contri-
bution of humidity to this index is likely irrelevant in those events. On the other hand, 
there are approximately 100 events on average in tropical and temperate regions. This 
pattern is similar for daily minimum heat index values above 32°C.

Fig. 8   Correlations of the heat index over time in the ERA and NCEP datasets. The first row depicts cor-
relations of the maximum and minimum daily HI within each model: ERA (a) and NCEP (b). The second 
row depicts the correlations between ERA and NCEP for c anomalies of daily maximum HI and d anoma-
lies of daily minimum HI. The third row depicts the correlations of annual maximums between ERA and 
NCEP for e daily maximum HI and f daily minimum HI
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4 � Discussion and conclusions

The four observational datasets examined here have similar values for daily maximum 
temperatures globally, although the three reanalyses demonstrate a cold bias over moun-
tainous areas relative to the CHIRTS merged station-satellite temperature data. The 
shape of the distribution and magnitudes of extreme temperature events are also well 
aligned between all four datasets.

The timing of extreme temperature events, however, is consistent between datasets in 
the extratropics and entirely different in the tropics. This is likely due to the small vari-
ability of temperature in the tropics relative to the extratropics. There is little correlation 
between datasets for anomalously hot daily temperatures, annual maximum tempera-
tures, daily maximum heat index, or daily minimum heat index. This indicates that the 
processes responsible for any anomalously hot events in the tropics are not well repre-
sented in the reanalyses.

When it comes to heatwave definitions, the WMO definition of a multi-day heatwave 
is an unusual event in the extratropics but never occurs in most of the tropics. This is 
likely due to the fact that multi-day extremes are generated by atmospheric blocking 
patterns that do not occur in the tropics, and they are often exacerbated by dry land 
surface feedbacks that do not occur in wetter regions of the world. There is a low cor-
relation between daily maximum and daily minimum heat index values in the tropics as 
well, indicating that persistence of high heat index values is also not common, and the 
highest daily maximum heat index values are not happening on the same days as the 
highest daily minimum heat index values.

Fig. 9   Aggregations of extreme temperature results by Koppen climate classification regions. Average cor-
relation by region of daily Tmax anomalies CHIRTS-NCEP (a) and average correlation by region of daily 
heat index anomalies ERA5-NCEP. Average number of occurrences of different extreme heat metrics by 
region: WMO-defined 5-day heatwave events (c), daily maximum heat index greater than the “danger” 
threshold of 41°C, and daily minimum heat index greater than the “extreme caution” threshold of 32°C
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Therefore, any attempt to generalize heatwave definitions from the extratropics to the 
tropics should be avoided, because the dynamics of extreme heat and the driving mecha-
nisms are likely to be dramatically different in the tropics. Multi-day persistent thresholds, 
such as the WMO heatwave definition, do not occur in much of the tropical world, and 
absolute heat/humidity thresholds are exceeded so often that they might not be considered 
extreme events.

We recommend that future research on extreme heat consider different heatwave defi-
nitions for different climate zones globally, selecting appropriate definitions for different 
Koppen-Geiger climate zones. In “continental” and “polar” climate regions, multi-day per-
sistent heatwaves occur while high HI values do not, and therefore, impacts are most likely 
to be associated with multi-day definitions or high anomalies of the HI (rather than abso-
lute values). In these regions, both CHIRTS and the reanalysis datasets would be useful to 
characterize these events. “Dry” climate regions can see the highest high absolute values 
of temperature, and therefore, multi-day events or single-day very high temperature or HI 
events are likely to be relevant. In “temperate” regions, multi-day heatwaves and high heat 
index values both occur, and it would be prudent to explore the types of impacts that are 
associated with each type of event in these regions. In “tropical” regions, there are few, if 
any, instances of multi-day heat events, and therefore, high HI values are likely to be most 
relevant for impacts in these regions. Because of the lack of agreement between datasets, it 
would be prudent to triangulate temperature information with local weather station records. 
This study was limited to the intercomparison of global gridded temperature datasets, and 
further studies comparing results with station data can indicate relative accuracy against 
stations in tropical regions.

This points to the need for locally developed heatwave metrics for different parts of the 
world, identifying which types of extreme heat, duration, and humidity are associated with 
different types of societal outcomes in that location. This study did not review or analyze 
data on health outcomes of these extreme heat metrics, which we recommend as a sub-
ject for further research in understudied regions. Thiaw et al. (2022) provide an outline for 
stakeholder engagement for the development of heat risk forecasts in the Sahel. However, 
the low consistency between datasets in the timing of anomalously hot events in the trop-
ics should also be a cause for concern in heat-health research. Because the datasets do not 
agree on the timing of specific hot events, any studies attempting to associate these temper-
ature records with health or other societal outcomes are likely to find null relationships or 
spurious relationships. Station data can be used in these cases, but in cases with no station 
data, we recommend that researchers compare results for different gridded dataset products 
to estimate the uncertainty in the heat-health relationships.
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